A $R=20$ star observed with LRIS (the Keck imaging spectrograph) produces 1890 detected photo-electrons per second. The R-band sky brightness at Mauna Kea is listed at the CFHT WWW site as 20.9 $\mathrm{mag} / \operatorname{arcsec}^{2}$. The LRIS pixel scale is 0.22 arcseconds/pixel, the readout noise is $8 \mathrm{e}-$ and the inverse gain of the system is $2.0 \mathrm{e}-/ \mathrm{DN}$.
(a) What is the rate of detected e-/pixel from the sky in the R band?
(b) What is the rate of detected e- from a $R=26$ magnitude star observed at an airmass of 1.2 assuming the extinction coefficient in R is 0.1 mag/(unit airmass)?
(c) Assume that you are measuring all of the light for the $R=26$ magnitude star in an aperture with a radius of 7 pixels. At what exposure time does the measurement become sky dominated?
(d) For the sky-dominated case, how does the S / N scale with exposure time?
(e) How does the S / N scale with seeing (assume you scale the measuring radius linearly with FWHM of points sources).
(f) Make a table of the source noise, sky noise, readnoise and S / N for exposure times of $1,60,600$, and 3600 seconds.
(g) What is the exposure time required to make an observation of this star with a S / N of 20 ?
(f) What is the exposure time required to make an observation of this star with $\mathrm{S} / \mathrm{N}=20$ with WFPC2 in the filter that is the closest match to " R "?

R_{*}	count rate from star	e-/second
$R_{s k y}$	count rate from background	e-/second/pixel
t	exposure time	seconds
r	radius of aperture	pixels
G	inverse-gain	e-/DN
D	dark current	e-/pixel/sec
RN	Readout noise	e-pixel

