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Signal-to-Noise in Optical Astronomy

1 CCDs

1.1 CCD overview

Going to start with the easiest case: CCD photometry of point sources. First a bit about
CCDs (charge-coupled devices). Ian Mclean’s book contains a fairly detailed account of
the history off the develpment of CCDs. Electronic detectors came on the astronomical
scene in the late 1970s. By the end of the 1980s, CCDs had won the battle of the various
electronic devices and had replaced photographic plates for all applications except for
very large field (> 15′) imaging. Early devices had 30µ pixels and were 400x400 to
800x800 pixels. In 2004,the first of the 4096x4096 devices are becoming available.

One of the principal reasons CCDs are so popular is they are very efficient with photons.
The ratio of incoming photons to detected electrons is the quantum efficiency and for
ome wavelengths and some detectors it approaches 100%. For photographic plates the
QE was generally less than 5%. Putting a CCD camera on your 1m telescope gave it the
same capability of the 4m telescopes of the photographic era.
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Real and imaginary QE curves for current and future CCDs in instruments at the Keck Observatory

1.2 CCDs: Some Details

Photons ⇒ e−: CCDs are silicon semiconductors. A structure is embedded in the
device that creates localized electric corrals so that when a photon is absorbed in the
silicon and pops an electron up into the conduction band, it is spatially localized in a
“pixel”. When the device is to be read out, the top row is clocked out (serially) through
a preamplifier, amplifier and analogue-to-digital converter, then all rows are shifted up
and the new top row is clocked out serially. By keeping track of the timing the
two-dimensional array can be reconstructed after the full array has been clocked out.

e−⇒ DN: The accumulated e−in each pixel gets represented by a number in “units” of
a DN (Data Number) or ADU (Analogue-to-Digital Unit). Until recently, the typical
A/D converter used 15-bits to represent the data numbers and 1-bit for the sign. The
dynamic range was therefore ±(215 − 1) = ±32, 767. Since there are no sources of
anti-photons, it makes more sense to use all 16 bits for positive data numbers and many
systems now have a dynamic range for data numbers of: 216 − 1 = 65, 535.

As a general rule, the number counts in any one pixel is NOT the number of
photo-electrons detected but related to e−through the e−/DN conversion:

Inverse-Gain: (almost everyone will refer to this as Gain and use something like “G”
to represent it) is this conversion factor in strange but dimensionless units of e−/DN.
Will use the symbol G for inverse gain in units of e−/DN
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This is often something that you have the option to change. How do you pick an
inverse-gain? Depends on the nature of the data you intend to acquire. The tradeoff is
usually between dynamic range and effective read noise although there are with some
chips other subtle issues. For most broadband photometry, the read noise makes only a
tiny contribution to the total noise. In this case it makes the most sense to set the gain
to:

G =(full well capacity of pixel)/(ADC saturation)

For LRIS, the CCD pixels “fill up” at around 300,000e−, the highest data number is
65,535 so a sensible inverse-gain is 4.58e−/DN. Using the inverse-gain of around 2 that is
available, the ADC saturates long before the pixels well have filled, giving up a factor of
2.3 in dynamic range per exposure.

2 Noise

2.1 Random (Statistical) Noise

For the discussion that follows be thinking about an aperture with radius r centered on
a point source on a CCD.

Here is the key to the symbols I’ll be using:
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R∗ count rate from star e−/second
Rsky count rate from background e−/second/pixel
t exposure time seconds
r radius of aperture pixels
npix number of pixels in aperture π × r2

G inverse-gain e−/DN
D dark current e−/pixel/sec

Noise in photon counting: “Poisson” or “shot” or “statistical” noise associated with
counting statistics (appropriate to counting the number of photons that arrive each time
interval). This comes from a binomial distribution with N → ∞ and “p” → 0. The
events (detections of photons) in one interval are independent of the events in the
previous or subsequent time intervals. For the Poisson distribution, the standard
deviation is just σ =

√
N where N is the number of detected events.

Don’t forget that this applies to the detected e−– not counts (unless G = 1).

In e−, σ =
√

N × G. In DN, σ =
√

N × G/G =
√

N/G.

Don’t forget that if you have averaged frames together, the inverse-gain changes. If n
frames are averaged together, the effective inverse-gain of the averaged frame is n×G.

2.2 Statistical noise sources in CCD images

2.2.1 Read Noise (RN):

For many CCDs/dewar electronics systems the read noise can be as low as a few e−.
There is a tradeoff between readnoise and “dwell time” such that you can decrease the
time to clock a chip out at the expense of higher read noise. For broadband imaging –
go for the faster readout. For the case of n frames averaged together, RN will decrease
by a factor

√
n.

The way RN is defined, it implies that (RN)2 readout e−were measured and within the
aperture of radius r the noise will:

σRN =
√

π × r2 × RN2 =
√

npix × RN2

In some cases, there can be a component of “digitization noise” (undersampled readout
noise). If the RN is 5e−and the inverse-gain is G = 10e−/DN then the read noise is
undersampled or poorly resolved. The effective read noise will be [RN2 + (0.5 × G)2]1/2

For broadband imaging this is rarely important because usually observations are very
quickly sky-noise or source-noise dominated.
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2.2.2 Dark Current noise:

For CCDs, dark noise is usually not an issue. For near-IR detectors it can still be
significant.

For a dark current of D in e−/second/pixel, the noise in the aperture is simply:

σdark =
√

D × npix × t

2.2.3 Shot noise in source:

This is the Poisson noise based on the number of detected photons from the source. If
source provides R∗ photo-electrons per second, then the total number collected during
the integration is simply R∗ × t where t is the integration time and the standard
deviation is:

σ∗ =
√

R∗ × t

Where do you find values for R∗? Hopefully at the Web site describing the properties of
your instrument. You could calculate this value given a true flux in energy units of a star
of given brightness, the size of your telescope mirror and the total effect throughput of
your mirrors, filter and CCD. But, it is simpler and more accurate to measure it with the
system you will use. The usual way it is presented is normalized to a U=B=V=R=I=20
mag star in counts per second at an airmass of 1 in the available filters. It is then simple
to figure out the expected count rate for an object of magnitude m:

R∗(m) = R∗(20) × 100.4(20−m)

As an example, here are the approximate numbers for LRIS on Keck:

Count Rates for B=V=R=I=20
B —– 1470 e−/second
V —– 1521 e−/second
R —– 1890 e−/second
I —– 1367 e−/second

2.2.4 Shot noise in the sky:

The uncertainty in the sky brightness per pixel is

σsky =
√

Rsky × t

and within the aperture simply
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σsky =
√

π × r2 × Rsky × t =
√

npix × Rsky × t

What is the sky brightness? It is different at different sites, in different bandpasses and
of course varies with the phase of the moon and distance from the moon. From NOAO
Newsletter #10, Alistair Walker measured for the skies above Cerro Tololo:

Sky Brightness (mag/arcsec2)
lunar age (days) U B V R I

0 22.0 22.7 21.8 20.9 19.9
3 21.5 22.4 21.7 20.8 19.9
7 19.9 21.6 21.4 20.6 19.7
10 18.5 20.7 20.7 20.3 19.5
14 17.0 19.5 20.0 19.9 19.2

This is an interesting table. First, the color of moonlight is clearly pretty blue. There is
a tremendous dependence on moon phase in the U-band (5 magnitudes = factor of 100),
and a little less than a factor of 2 between new and full moon in the I-band. Also, the
sky at new moon is relatively faint in the blue filters, and quite bright in R and I.

How does this translate into Rsky (photo-electron rate per pixel)? You need to know the
plate scale of your detector and the effective QE of the system – most straightforwardly
in units of e-/magnitude/filter as discussed above.

Let’s call the numbers from the table up there SBsky (surface brightness of the sky) and
the linear pixel scale of the detector SCALE (′′/pixel) which for LRIS is 0′′.218/pixel.

So, the area of one pixel is SCALE2 = 0.0475(′′)2 for LRIS. This is also the ratio of the
flux in a pixel to the flux falling on a square arcsecond. In magnitudes this will be:

mpixel = m′′2 − 2.5log(SCALE2)

For LRIS, add 3.308 to each of the entries in the sky brightness table and you get the
sky brightness in magnitudes for LRIS pixels. To convert to counts per pixel from the
sky, use this value in

R(m) = R(20) × 100.4(20−m)

For LRIS, the counts per second in the sky are pretty high. For example, in the R-band
at new moon:

Rsky = 1890 × 100.4(20−24.21) = 39.1e − /sec/pix

So, the sky noise,
√

39.1 = 6.25e−, is equal to the readout noise in just 1 second of
integration time. In a 10 minute-long exposure you have 1/5 of the dynamic range of
the system filled with sky photons.
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2.2.5 An interesting side-trip – sky brightness:

For ground-based sites much of the sky brightness shortward of 7200Åis due to emission
lines from city lights. Redward of there it is mostly OH emission in the upper
atmosphere.
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Figure 1: Spectra of the night sky from Mt. Hamilton (dotted line) and from Mauna
Kea (solid line). The transmission curves in the lower panel are measured for the Harris
B,V,R,I filter set from KPNO. The dashed line is the Thuan-Gunn I filter.

The standard B, V,R filters don’t make alot of sense for site like Mt. Hamilton or any
ground-based site in the future. The Thuan-Gunn set was designed to miss the worst of
the usual emission lines from city lights, although when they were designed, the
high-pressure sodium lights were not available and the wings of the Na“D” lines were
not so extended. The T-G “r” filter works less well than the “Spinrad” R.
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3 The Standard S/N Equation

All these sources of noise are independent so they get added in quadrature. The general
S/N equation is:

S/N =
R∗ × t

[(R∗ × t) + (Rsky × t × npix) + (RN2 + (
G
2

)2 × npix) + (D × npix × t)]1/2

3.1 Conversion from S/N to uncertainties on the magnitude
scale

Usually errors in astronomy are expressed on the logrithmic magnitude scale. To go
from S/N to magnitudes errors consider:

m ± σ(m) = C0 − 2.5log(S ± N)

= C0 − 2.5log[S(1 ± N
S
)]

= C0 − 2.5log(S) − 2.5log(1 + N
S
)

σ(m) = ±2.5log(1 + 1
S/N

)

Note, that magnitude errors are often taken to be fractional errors and measurements
like V = 31.9± 0.1 are claimed to be 10% photometric accuracy. This is close to but not
quite correct:

σ(m) = ±2.5log(1 + N
S
)

σ(m) = ±2.5
2.3

[N
S
− 1

2
(N

S
)2 + 1

3
(N

S
)3 − ...]

σ(m) ≈ ±1.0875(N
S
)

3.2 Systematic Errors: What has been left out of this
equation?

The S/N equation above is really the best you can ever hope for. There are many other
opportunities to degrade the S/N.

There are also many “analysis errors” that contribute to uncertainty in the final value
derived for a measured quantity. In many cases these lead to systematic errors rather
than random ones. Some of these could be the source of an entire lecture on their own.
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1. Bias level correction: There is a positive constant added to all pixels that is
usually determined from the mean of an overscan region. You want to determine
this value and subtract it from your data, but the consequences of getting it wrong
by a little bit are small.

2. Bias structure correction: Once upon a time this was an issue with some chips
showing a distinct, stable structure that needed to be subtracted out or, for some
chips that were clocked in sync with 60 hz there was a stable pickup noise pattern
that needed to be subtracted off. As this is an additive correction, you can get it
pretty wrong and it won’t make much difference

3. Flat-fielding: This is a tricky business and can never be done perfectly. For
many widely used systems, it is hard to flat-field to better than 1 part in 100 on
large spatial scales. So, if a given star is measured on different parts of a chip,
your answer will change by this amount.

This can often be a significant, unquantified source of error.

4. Interpolation errors: When calculating the number of detected e−within a
circular aperture, you have to do something about the fact that you have square
pixels...

5. CTE problems: Charge transfer efficiency is measured in “nines” – “five nines”
means 0.99999 efficiency per pixel shift. Sounds pretty good, but think about how
many shifts are required to get the last pixel clocked out. If a fraction f of the
charge is lost per shift, then after clocking out the fraction of the initial charge
than remains is (for the last pixel in a 2048-row CCD):

(1 − f)2048

For “five nines” – for the worst case pixel loss is 2%.

6. Non-linearity when approaching full well values:

A good thing to check with your first images at the telescope is the magnitude
difference for stars of different brightness measured on frames with different
exposure times. Take a long and short exposure of a field with at least several
stars and difference the magnitudes through a fixed aperture. The deviations from
a straight line in the plot of magnitudes derived from the short vs long exposures
will tell you where the response becomes non-linear.

7. Charge skimming:

8. Shutter Vignetting:

9. an unending list of possible complications...
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3.3 The Limiting cases

3.3.1 Bright sources

for bright sources:

S/N '
√

R∗ × t ∝ t
1

2

3.3.2 Background Limited

The usual case for broadband imaging is to be “sky limited”. This means that
√

Rsky × t > 3 × RN (note these are both per pixel).

For faint sources in this case,

S/N ' R∗ × t
√

npix × Rsky × t
∝ t

1

2

3.4 Example: LRIS V-band imaging:

For LRIS, the readnoise is well-sampled and there is essentially no dark current. The
basic S/N equation is:

S/N =
R∗ × t

[(R∗ × t) + (Rsky × t × npix) + (RN2 × npix)]
1/2

First, what is a sensible aperture to use? For making estimates for observing proposals
and first-order planning of observing runs you can assume a Gaussian profile for point
sources so

I(r) = I0 × e
−r

2

2σ
2

and the count rate within an aperture R (sorry for using R’s for radius and also for
count Rates) can be found from:

R∗(r) =
∫ R

0
I(r)2πr dr

Good exercise for the reader: For the case of a Gaussian profile, find the radius R that
maximize S/N for a faint source in the sky-limited case. The answer is Roptimal = 1.7σ.
Will use this. For a Gaussian, the Full-Width-at-Half-Maximum (FWHM) = 2.35σ so
the best radius is at around 2

3
FWHM.

If points sources really could be described as gaussians, you would be using only ∼ 90%
of the light, but to get the other 10% you pay too much in added sky noise.
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It’s easy to plug in and derive S/N as a function of integration time for an V = 26
magnitude point source at new moon:

R∗(V = 26) = R∗(V = 20) × 100.4×(20−26) = 6.1e−/sec

The counts in the sky are:

Rsky = R(V = 20) × 100.4×(20−25.1) = 13.8e−/sec/pixel

LRIS readnoise is RN ∼ 8e−.

Figure 2 shows the S/N vs exposure time for different FWHM values for the images.
This assumes that you stick with the “optimum” aperture. Note the importance of
image quality by comparing the exposure time at fixed S/N.
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Figure 2: S/N vs exposure time for V=26 mag star using LRIS on KeckII plotted for
different values of the FWHM of point sources.

For planning observations, the more typical case is to have a target S/N and solve for
the integration time. Good exercise #2 is to fill in the easy steps to derive:

t =
[SN2(R∗ + npix × Rsky] + [(SN4(R∗ + npix × Rsky)

2 + 4 × R2
∗ × SN2 × npix × RN2]

1

2

2 × R2
∗

In Fig 3 it you can see that for bright stars (with LRIS this means V < 21.5) readnoise
contributes to the noise budget. At around V = 24 the shot noise in the star and sky
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Figure 3: Upper Panel: The contribution of each noise source in log(e−) at fixed S/N
over a range of magnitudes. Lower panel Exposure time vs mag.

are about equal, fainter than that the sky dominates. This crossover depends on the
filter (sky brightness) and on FWHM.

3.5 S/N in spectra

For spectra, the basic rules are the same but there are differences in the effective
aperture. For each pixel in a spectrum, there are counts due to the object, the sky and
counts due to the readout noise. At the wavelengths where there are sky emission lines,
the fractional noise goes up significantly. In the final extracted spectrum (much more
about this later), you will have combined several rows containing object counts and
often the S/N is calculated after averaging in the spectral direction to be not S/N per
row-summed pixel, but rather S/N per resolution element. The goal for the wavelengths
that include sky emission lines is to determine the value of the sky line at the position of
the object spectrum accurately enough so that after subtraction, only the shot noise
from the line intensity remains behind.
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Figure 4: Comparison of the relative exposure times for the prime-focus camera at the
Lick 3m, LRIS on Keck and HST/WFPC2. Don’t take the HST numbers too seriously.

3.6 Sampling and Binning

You will occasionally run into claims that for FWHM< 2 pixels, images are
undersampled because the Nyquist theorem. The Nyquist criterion doesn’t really have
much to do with CCD data as it is based on the idea of sampling a function in discrete
intervals with delta functions (unlike CCDs which integrate over contiguous intervals).
Nyquist was concerned with aliasing problems.

But, the FWHM= 2 pixels is a pretty good rule of thumb anyway. For smaller images
(wrt pixels), it becomes noisy to do point-spread-function (PSF) fitting photometry,
interpolation errors grow and you become more sensitive to intra-pixel QE variations.

It also doesn’t make sense to significantly oversample your PSF mostly because of the
added RN. There are two options for binning CCD data. The smart way is to recognize
at the telescope that you have a poor match of image quality to pixel size and use
“on-chip” binning. If you bin 2 × 2 before readout then you double (or is it halve?) your
scale but the RN of the large pixel is the same as the individual smaller pixels. You can
also bin the data after the fact in the analysis procedure, but this is not as smart as in
this case you are only averaging over RN from the four pixels and the effective read
noise is RNbinned = 4×RN√

4
= 2 × RN .

With spectra, it is much more common to set work with the CCD binned in at least one
direction.
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If this CCD was binned in columns, then spectral resolution would be lost. On the other
hand, binning by rows can make sense from the point of view of reducing the readout
noise (assuming nothing will be made of the spatial resolution). The same rule of thumb
works here as for point sources. Making a plot of intensity vs row number will show a
not-too-different-from Gaussian distribution of counts along a column and a good goal is
to try and make that distribution have a FWHM of between 2 and 3 pixels.

Some references:

1. Much of this was cribbed from Bill Harris’s notes for a McMaster University
Graduate Student Workshop/

2. Harris, W. E., 1990, PASP, 102, 949.

3. Howell, S. E., 1989, PASP, 101, 616.

4. King, I. R., 1983, PASP, 95, 163.

5. ASP Conf. Series Vol 8: “CCDs in Astronomy”.

6. ASP Conf. Series Vol 23: “Astronomical CCD Observing and Reduction
Techniques”.

7. http://www.noao.edu/kpno/docs.html Check the Direct Imaging Manual.
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Figure 5: Two cuts across a spectrum. Under a sky emission line and not.
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Figure 6: An example of a 2-D spectrum on a CCD. The dark rows down the center are
supposed to be the object spectrum, the vertical lines are night-sky emission lines.


