

Astronomy 80 B: Light

Lecture 18: color
29 May 2003
Jerry Nelson

Topics for Today

- Research paper is due on or BEFORE 5 June
- List of peoples scores to date
- List of people short on section attendance
- Transit of Mercury
- Last of perspective
- Color and color vision
- Next lecture : ch 12 waves and diffraction
- Final lecture: Review?

Section attendance

- needs one more (5 needed in total)
- Bartley, Davies, Galvan, Hemphill, James, Minolli, Patel, Ponce, Portugal, Prowell, Schwartz, Semana, Wildman, Woodruff
- needs two
- Cambell, Davidoff, Lebus
- Needs three
- Gonzales, Healy, Lawson, Morabito, Rucker
- Needs 4
- Lutzross, Mcvey, Myers
- Needs 5
- Gomez, Horn, Lim, Mottney

Grades, homework and quizes

- On the table are my grade lists for each of you, ordered by SSN
- check that I have all of your homework recorded
- Check that I have all of your quizes recorded
- If you disagree with anything, tell me immediately

Transit of mercury across sun - multiple exposure

FIGURE 8.25

Palazzo Spada, Rome. (a) View through colonnade. (b) Views from other end of colonnade, showing the deception.

(a)

(b)
$\angle \angle U$

FIGURE 8.27
(a) Side view of tennis ball and basketball. (b) Views of balls as seen from P and Q. (c) View from close up, appears distorted. (d) Photograph of nude found in Delacroix's album.
(e) "Odalisque" by Delacroix (1857).

(c)

$\stackrel{\bullet}{\bullet} \quad$| Tennis |
| :--- |
| ball |

(a)

d)

View from P

(b)

(e)

- Complex phenomenon
- Our visual tools are our three cone receptors
- Short wavelength
- Medium wavelength
- Long wavelength
- A variety of light sources can be viewed by us
- Nature of source and background determines our perception
- Great variety of sources and light mechanisms

The Trichromatic Cone Mosaic

- In this section, color is largely a human phenomenon that relates closely to how the retina and brain work
- color vs wavelength and non spectral colors
- Intensity distribution curves
- Three qualities of colored light
- Hue
- Saturation
- Brightness or Lightness
- Color tree

- Intensity distribution

curve

- This plot or graph is key tool for understanding color and for representing it
- This graph is quantitative and thus less ambiguous than words

Z3Y

FIGURE 9.2
Intensity-distribution curve. Solid line: the intensity of light, at each visible wavelength, obtained when white light is reflected from a greenish region of Plate 8.4. Dashed line: the same light with a little extra red light mixed in.

Hue

- Hue
- The dominant color or color name
- This distinguishes one spectral color from another
- All yellows are different in hue from all blues
- Defined by the dominant wavelength
- Actually, this wavelength may be missing from intensity distribution curve
- Saturation is the word that describes the degree to which the light source is monochromatic

(a)

(c)

FIGURE 9.3
Saturation. (a) White light is completely unsaturated. (b) A saturated red light. (c) A less saturated red light-pink.

Brightness and

- Brightness
- Amount of light from light source
- Lightness
- Fraction of light reflected from surface
- Describes the properties of the reflecting material, not the light source

FIGURE 9.4
(a) Brightness of a light. The intensitydistribution curves for three different brightnesses. (b) Lightness of a surface. The curves correspond to the percentage of incident light reflected at each wavelength.

Luminance and lightness

Additive color mixing

- RGB (red green blue)
$-\mathrm{R}+\mathrm{G}+\mathrm{B}=\mathrm{W}$ white
$-\mathrm{G}+\mathrm{R}=\mathrm{Y}$ yellow
$-\mathrm{B}+\mathrm{G}=\mathrm{C}$ cyan
$-\mathrm{B}+\mathrm{R}=\mathrm{M}$ magenta
- follows that
$-\mathrm{B}+\mathrm{Y}=\mathrm{W}$
$-\mathrm{R}+\mathrm{C}=\mathrm{W}$
$-\mathrm{G}+\mathrm{M}=\mathrm{W}$

- so these are complementary colors
- metamers are different intensity distribution curves that look identical

- Color tree represents the three characteristics
- Saturation
- Hue
- Lightness

FIGURE 9.5
Schematic drawing of a color tree (compare with Plate 9.1).

- Intensity plots for additive color mixing

FIGURE 9.6

Additive color mixing. Intensity-
distribution curves of (a) blue (B)
(b) green (G), and (c) red (R) lights

Intensity-distribution curves of the additive mixtures (in equal amounts) of
(d) $\mathrm{G}+\mathrm{R} \equiv$ Yellow (Y), (e) $\mathrm{B}+\mathrm{G} \equiv \mathrm{Cyan}$
(C), and (f) $B+R \equiv$ Magenta (M).

Intensity-distribution curves of
(g) monochromatic yellow and (h) a
yellow made of an additive mixture of monochromatic green plus
monochromatic red. (i) Intensity-
distribution curves of the additive mixture of $B+G+R \equiv$ White (W).

- Additive color mixing "rules"

FIGURE 9.7
Simple additive mixing rules. The drawing shows three partially overlapping light beams, which combine additively. $\mathrm{B}=$ Blue, $G=$ Green, $R=$ Red, $Y=$ Yellow, $C=$ Cyan, $M=$ Magenta, and $\mathrm{W}=$ White:

$$
\begin{aligned}
G+R & \equiv Y \\
B+G & \equiv C \\
B+R & \equiv M \\
B+G+R & \equiv W
\end{aligned}
$$

(a) Wavelength (nm)

FIGURE 9.8
The lights with these two intensitydistribution curves look alike to your eye, even though one has only two wavelengths present while the other has all vișible wavelengths.
(a) Monochromatic blue plus monochromatic yellow. (b) Broad-band white (all visible wavelengths).

- Finding the wavelengths of two complementary colors

FIGURE 9.9

Wavelengths of complementary pairs of monochromatic colors. To find the complement of a given wavelength, say $\lambda=600 \mathrm{~nm}$, draw a horizontal line from the $600-\mathrm{nm}$ mark on the vertical axis. Find the point where this line intersects the curve and drop a vertical line from
that point to the horizontal axis to
determine the wavelength of the
complement, $\lambda=489 \mathrm{~nm}$. Thus, the
complement of orange $(600 \mathrm{~nm})$ is bluish cyan $(489 \mathrm{~nm}) .(\mathrm{V}=$ Violet, $\mathrm{B}=$ Blue,
80B-I $\mathrm{O}=$ Cyan, $\mathrm{G}=$ Green, $\mathrm{Y}=$ Yellow,
$\mathrm{O}=$ Orange, and $\mathrm{R}=$ Red.) The curves depend somewhat on the observer and on the choice of white

> - Can the sum of 3 colors (RGB) yield any given color?

\author{

- Almost yes
}

FIGURE 9.10

The relative amounts of your three colors ($460-\mathrm{nm}$ blue, $530-\mathrm{nm}$ green, and $650-\mathrm{nm}$ red) needed to match any monochromatic (spectral) color that we choose. Notice that the required amounts of red and green colors are zero at 460 nm . This is because you can match our 460 nm using only your $460-\mathrm{nm}$ blue. The relative amount of the blue, then, is 100% at that point. Similarly, the blue and red amounts vanish at 530 nm , while the blue and green vanish at 650 nm . (For historical reasons, "equal amounts of blue, green, and red" means that the intensity ratios of blue/green/red are about 1.3/1.0/1.8. The curves shown here and in succeeding figures are standardized; the actual data vary somewhat with observer, intensity of light, etc.)

Chromaticity diagram

- sum of three colors = 1
- Horseshoe plot
- additive mixtures of any two colors lie on a straight line
- complement of any color is found by extending a straight line through white and to the opposite side of horseshoe
- definition of "white"
- given a color, its dominant wavelength can be found by drawing a line from white through the color to the horseshoe.
- positive addition give everything inside triangle (650, 530, 460), but not everything inside horseshoe.
- For strictly positive mixing, can invent imaginary colors: tristimulus values $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
- resulting CIE chromaticity diagram, x, y are called the colors chromaticity

FIGURE 9.12
Tristimulus values: \bar{x}, the relative amount of $[X], \bar{y}$, the relative amount of $[Y]$, and \bar{z}, the relative amount of $[Z]$, needed to match a given spectral color. The $[X],[Y]$, and $[Z]$ are imaginary primaries, and the curve was not measured but rather was derived mathematically from Figure 9.10 and the definitions of the imaginary primaries.

FIGURE 9.13
C.I.E. chromaticity diagram.

- Properties of filters
- Multiply transmission curves to find net transmission

FIGURE 9.14

Ideal filters. Transmittance curves of (a) an ideal blue filter, (b) an ideal green (d) Re and (c) an ideal red fiter
(d) Resula (b) and (c) Any wo of (a),(b), and (c). Also shown a
transmittance curves of filters that
transmit the same light as one gets from
additive mixtures of (a), (b), and (c): (e) additive mixtures of (a), (b), and (c): (e)
ideal yellow filter (green plus red \equiv white minus blue), (f) ideal magenta filter (blue plus red \equiv white minus green), and (g) ideal cyan filter (blue plus green \equiv white minus red). Notice that (a), (b), and (c) also give the results of subtractive
mixtures of (e), (f), and (g). For
example, a subtractive mixture of (f) and
(g) gives (a), as shown schematically in (h)

Subtractive colors

FIGURE 9.15

Simple subtractive mixing rules. The drawing shows the effect on white light of three partially overlapping broad-band filters, which produce subtractive mixing:

A subtractive mixture of C and $M \equiv B$.
A subtractive mixture of C and $Y \equiv G$.
A subtractive mixture of Y and $M \equiv R$. A subtractive mixture of C, Y, and $M \equiv B k$ (Black).

Color mixing

- Addition examples:
- simple addition: projection TV
- partitive mixing: regular TV
- some paintings, some textiles
- mix in time
- Subtractive mixing
- filters- complex subject in general
- dyes- substance that absorbs some part of spectrum
- multiple use of same filter or dye
- opaque objects get color from absorbed light
- multiple reflections can change color
- inside of rose
- inside of colored cup
- In general need to multiply the transmittance curves together to find out what happens

Sources of Illumination

- Light source can strongly influence the apparent color of an object
- To understand what colors will be seen, need to know the intensity distribution curve of the source and the reflecting or transmitting object.
- Color temperature is useful idea, based on black body appearanc
- TV studios use 3200° floodlights. Can't dim them and maintain colors
- Color film is designed for a given color balance
- filters on cameras can restore proper color balance when the light source is different than the film is designed for.

2003 May 29

FIGURE 9.17

Subtractive color mixing of two different dyes at various concentrations. (a) Transmittance of (1) blue and (2) yellow dyes at unit concentrations, and (3) a one-to-one mixture of the two dyes, also at unit concentration. (b) Chromaticity paths as the concentration of mixtures of the two dyes is increased. At very low concentration the dyes are almost transparent, so the illuminating white
light passes through unchanged (W). As the concentration is increased, the color becomes more saturated, ultimately becoming red at high concentrations. The path between white and red depends on the ratios of the
concentrations of the two dyes. Shown are a one-to-one mixture ($1: 1$), a three-blue-to-one-yellow mixture ($3: 1$), and a one-blue-to-three-yellow mixture ($1: 3$).
The points marked b and y are the colors of the unit concentration dyes shown in (a). Thus, appropriate mixtures of these yellow and blue dyes result in almost any color in the lower half of the
chromaticity diagram, but not the green one might expect from blue and yellow!

(a)

Wavelength (nm)

(b)

- Hue and reflectance

FIGURE 9.19
The reflectance curves of two pieces of cloth. In sunlight, a looks gray, b looks brown. Under incandescent illumination, which lacks the short-wave end of the spectrum, both have the same hue.

Intensity distribution of light sources

- Intensity distribution of different light sources
- Incandescent bulb
- Fluorescent tube
- High intensity discharge lamp

FIGURE 9.20

Intensity-distribution curves of white-
light sources: (a) $100-\mathrm{W}$ incandescent bulb, (b) Delux Warm White fluorescent tube, (c) $400-\mathrm{W}$ high-pressure sodium high-intensity discharge lamp.

> - CIE diagram showing black body location

FIGURE 9.21
The location of the color of the light from incandescent sources at various temperatures. The temperature is in degrees Kelvin (${ }^{\circ} \mathrm{K}$), where ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273$. Shown are three standard white sources: $A=$ tungsten filament ($2854^{\circ} \mathrm{K}$), $B=$ noon sunlight $\left(4870^{\circ} \mathrm{K}\right)$, and $C=$ tungsten filament filtered to approximate "daylight" $\left(6770^{\circ} \mathrm{K}\right)$. A candle would be about $1800^{\circ} \mathrm{K}$, while a photographic flash would be $4300^{\circ} \mathrm{K}$.

FIGURE 9.22

Color from printer's ink. Ray a reflects from the ink. Ray b passes through the ink, is reflected by the paper, and passes through the ink again. Each reflection or transmission produces color by a subtractive process, but rays a and b combine additively (partitive mixing).

FIGURE 9.23

Media colors. Inside the heavy boundary are the colors that can be printed using the subtractive primaries. The colors of the full-strength inks are indicated: $y=$ yellow, $m=$ magenta, $c=$ cyan. Inside the dotted triangle are the colors avail80 B - - able in color TV, with the colors of the 80B-Lig three phosphors marked by x 's. Inside the dashed curve are the colors available in photographic slides, with the colors of the three dyes marked by small circles.

- Half tone printing

FIGURE 9.25
Halftone arrays at different angles produce different moiré patterns.

$\because * * *+\cdots+\cdots+\cdots \cdots \cdots$

Circular halfitones

FIGURE 9.26
Dramatic effects of a circular halftone screen.

FIGURE 9.30
Some of the processes contributing to the color of paint. Incident light (I) strikes the paint, some of it (1) is reflected at the surface of the vehicle, some $(2,3,4)$ continues to a pigment particle. There it may be selectively reflected or transmitted. It may go on to strike the support (2), another pigment particle (3), or go directly to the viewer (4). Each process may impart a different intensity distribution to the light. The successive reflections (A and B) and the transmission followed by reflection (C and D) constitute subtractive mixing. The different rays headed toward the viewer (1, 2, 3, and 4) combine additively, if they are close to each other.

$$
\square
$$

VEHICLE
 1

FIGURE 9.31

Dependence of color on the size of the pigment particles. The light reflected from the vehicle is unsaturated (u), and that from the pigment is only weakly saturated (w). Light passing through the pigment is selectively absorbed. After traversing enough pigment, it is all absorbed (a), but if it escapes the pigment, the transmitted beam is saturated (s). All reflected light combines in an additive mixture here. (a) Large pigment particles result in a darker, unsaturated color. (b) Smaller pigment particles result in a lighter, more saturated color. (c) A fine powder gives a still lighter but unsaturated color.

(a)

(b)

(c)

FIGURE 9.32
(a) White pigment mixed with colored pigment of low hiding power. The colored reflection, A, is weak but selective. The white reflection, B, is strong and nonselective, decreasing the saturation. Further, the selective transmission of the colored pigment, C, which is reflected by the support, is blocked by the opaque white pigment, D, further decreasing the saturation. (b) White pigment mixed with colored pigment of high hiding power. Here the colored pigment transmits less light than in (a). Had the selectively transmitted light, E, struck another colored pigment particle, it would have been absorbed. Instead, it strikes the highly reflecting white pigment particle and is reflected, F, thus increasing the saturation. (c) The path in the chromaticity diagram of the color of a mixture of high hiding power blue paint, 1, with white paint, 2, as more and more white is added. First the saturation increases and then it decreases. (Of course, since the lightness increases, this really should not be drawn on one chromaticity diagram.)

(a)

(b)

FIGURE 9.33
Surface reflections. (a) Diffuse reflections from a matte surface are seen by the viewer no matter where he stands (likewise, he sees the light scattered by the pigment). (b) Properly located, the viewer does not see the specular reflections from a glossy surface (but does see the light scattered by the pigment).

2003 May 29

FIGURE 9.16

Subtractive mixing of a color with itself. (a) Transmittance curve of one filter (solid line); of two identical such filters, one behind the other (dotted line); and of many identical such filters, one behind the other (dashed line). Here, instead of giving the percentage of incident light transmitted at each wavelength, we give the fraction transmitted. That is, we've simply changed from percentage to decimal equivalent. (b) Path, in the chromaticity diagram, of the color of the light transmitted as more and more filters are used and the intensity of the incident light is increased proportionally. One filter gives a desaturated orange (the point marked 1). Several filters give an unsaturated purple. Many filters result in a monochromatic violet.

