

Astronomy 80 B : Light

Lecture 9: curved mirrors, lenses, aberrations

29 April 2003
Jerry Nelson

Topics for Today

- Optical illusion
- Reflections from curved mirrors
- Convex mirrors
- anamorphic systems
- Concave mirrors
- Refraction from curved surfaces
- Entering and exiting curved surfaces
- Converging lenses
- Diverging lenses
- Aberrations

In the corridor illusion (above, left), the three cylinders look tonequal in size. In the test of the contrast and assimilation theory of the corridor illusion (directly above), the cylinders appear to be only slightly different in size.

House of Mirrors

at indicated locations one sees no images of ones self

FIGURE 3.5
(a) Light rays illustrating the three rules. incident on a convex spherical mirror. Note direction of the rays-they are no
all incident parallel to the axis! In this two-dimensional diagram and throughout the rest of the book, the threedimensional spherical mirror appears as a part of a circle. (b) A shiny copper bow makes a fine convex spherical mirror.
(a)

FIGURE 3.8
An object Q, too distant to be shown, sends parallel rays to a convex mirror. Its image, Q^{\prime}, lies in the mirror's focal plane.

- Anamorphic mirror and image

FIGURE 3.10
Cylindrical anamorph, with mirror that reconstructs the image.

- Anamorphic
mirror (conical)

- The artist Hans Holbein made anamorphic paintings

Ray rules for concave mirrors

(a)
(b)

(c)

FIGURE 3.16

Three rays obeying their respective rules, for a concave mirror.

Image from concave mirror

FIGURE 3.17

Construction of the image in a concave

Reflections get complex

FIGURE 3.18
Rippling lines of light reflected and focused by the uneven surface of the water. Lines can be seen near the surface
of the water as well as on the wall, in
the shadow of the fence.

Constructing images with rays and mirrors

- Paraxial rays are used
- These rays may only yield approximate results
- The focal point for a spherical mirror is half way to the center of the sphere.
- Rule 1: All rays incident parallel to the axis are reflected so that they appear to be coming from the focal point F.
- Rule 2: All rays that (when extended) pass through C (the center of the sphere) are reflected back on themselves.
- Rule 3: All rays that (when extended) pass through F are reflected back parallel to the axis.
- Parallel Rays Rule: Rays parallel to each other are imaged to the same place on the focal plane

Spherical mirror images

- Convex spherical mirrors

- image is virtual
- focal length is half the radius of the mirror
- image is closer to mirror
- image is erect
- makes a wide angle mirror
- Concave spherical mirrors
- focal length is half the radius of the mirror
- image is real
- image is closer to mirror
- image is inverted
- image is de magnified
- If object is between the center of curviture and the focus:
- image is real
- image is further from mirror
- image is inverted
- image is magnified
- If object is between the focus and mirror:
- image is virtual
- image is erect
- image is magnified

$\frac{1}{x_{o}}+\frac{1}{x_{i}}=-\frac{1}{f}$

f is positive for convex mirror, negative for concave mirror. This equation allows us to calculate the location of the image. $\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{o}}$ are positive as shown.

- Magnification:

$$
\frac{s_{i}}{s_{o}}=-\frac{x_{i}}{x_{o}}
$$

- This equation allows us to calculate the size of the image

$$
\begin{gathered}
\mathrm{x}_{\mathrm{o}}=10 \mathrm{~cm} \\
\mathrm{f}=-3 \mathrm{~cm} \\
\mathrm{x}_{\mathrm{i}}=+4.29 \mathrm{~cm}
\end{gathered}
$$

$$
\frac{1}{x_{o}}+\frac{1}{x_{i}}=-\frac{1}{f}
$$

Mirror Equation Examples

- Given f and x_{0} find x_{i}

$$
\begin{aligned}
1 / x_{i} & =-(1 / \mathrm{f})-\left(1 / \mathrm{x}_{0}\right)=\left[\left(\mathrm{x}_{0}+\mathrm{f}\right) / \mathrm{x}_{0} \mathrm{f}\right] \\
\mathrm{x}_{\mathrm{i}} & =-\left(\mathrm{x}_{\mathrm{o}} \mathrm{f}\right) /\left(\mathrm{x}_{\mathrm{o}}+\mathrm{f}\right)
\end{aligned}
$$

- Given x_{0} and x_{i} find f

$$
\mathrm{f}=-\left(\mathrm{x}_{0} \mathrm{x}_{\mathrm{i}}\right) /\left(\mathrm{x}_{0}+\mathrm{x}_{\mathrm{i}}\right)
$$

- Given f and x_{i} find x_{0}

$$
\mathrm{x}_{\mathrm{o}}=-\left(\mathrm{x}_{\mathrm{i}} \mathrm{f}\right) /\left(\mathrm{x}_{\mathrm{i}}+\mathrm{f}\right)
$$

- Example

$$
\begin{aligned}
\mathrm{x}_{0} & =49 \mathrm{~mm}, \mathrm{f}=-30 \mathrm{~mm} \text { (neg for concave mirror) } \\
\mathrm{x}_{\mathrm{i}} & =78 \mathrm{~mm} \\
\mathrm{~s}_{\mathrm{o}} & =20 \mathrm{~mm} \\
\mathrm{~s}_{\mathrm{i}} & =-32 \mathrm{~mm} \text { (negative for inverted image) }
\end{aligned}
$$

Refraction at

 spherical surface- Refracting properties of spherical lens surfaces
- (remember, light is "pulled" towards normal as it enters higher index material)
- Light is "pushed" away from normal as it enters lower index material

(a)

(c)

FIGURE 3.20

Effect of a spherical glass surface on light rays incident parallel to the axis: (a) and (b) converging surfaces, (c) and (d) diverging surfaces.

(b)

(d)

- Converging lenses can focus parallel light
- Converging lenses generate parallel light from a point source placed at the lens focal point
- Focal length f related to index n and surface radii r

$$
\frac{1}{f}=2\left(\frac{n-1}{r}\right)
$$

2003 April 29

- Make parallel light diverge

[^0]
(a)

(b)

FIGURE 3.23

A diverging lens, consisting of two
diverging surfaces. (a) Rays parallel to the
801 axis seem to come from F^{\prime} after they pass
through the lens. (b) Rays converging toward F are also made to diverge and emerge parallel to the axis.

Pinholes and eye

FIGURE 3.24

Optics of an eye viewing through multiple pinholes. The lens of the eye creates one image from rays that passed through different pinholes.

FIGURE 3.25

(a) Water droplet and blade of grass acting as a retroreflector. Only one incident ray is shown, and only a few of the many, diffusely reflected rays due to this one incident ray. (b) Dew
heiligenschein around the shadow of the photographer's head. (c) Glass beads used as retroreflectors make this jogger's vest visible in car headlights.

(b)

(c)

Three stages of construction by ray tracing of the image formed by a converging lens. The lens is shown relatively thick so that you can see it but treated as if it were just the vertical plane through its center.

- The three ray rules for constructing an image from a lens

Constructing images with rays and lenses

- Paraxial rays are used
- These rays may only yield approximate results
- Thin lenses only
- focal length is positive for converging lens
- focal length is negative for diverging lens
- Rule 1: A ray parallel to the axis is deflected through F^{\prime} (or as if it came from F^{\prime})
- Rule 2: A ray through the center of the lens continues undeviated
- Rule 3: A ray to the lens that (when extended, if necessary) passes through F is deflected parallel to the axis
- Parallel Rays Rule: Rays parallel to each other are imaged onto 2003 April 29 the same point in the focal pob-ing

Ray tracing in a converging lens

Here, image P^{\prime} is virtual, erect and larger than the object P

Visibility in a converging lens

Virtual image only visible from shaded area

- a) showing how lens is extended for construction and region of visibility
- b) parallel light focussed onto focal plane and region of visibility

2003 April 29

- These will intersect at image
(a)

(b)

(c)

Converging lens and sign conventions

Lens equation

$$
\frac{1}{x_{o}}+\frac{1}{x_{i}}=\frac{1}{f}
$$

- fis positive for converging lens, negative for diverging lens. This allows us to calculate location of the image

$$
\frac{s_{i}}{s_{o}}=-\frac{x_{i}}{x_{o}}
$$

- This equation allows us to calculate the size of the image (magnification)

Lens Equation Examples

- Given f and x_{0} find x_{i}

$$
\begin{aligned}
1 / x_{i} & =(1 / f)-\left(1 / x_{0}\right)=\left[\left(x_{0}-f\right) / x_{0} f\right] \\
x_{i} & =\left(x_{0} f\right) /\left(x_{0}-f\right)
\end{aligned}
$$

- Given x_{0} and x_{i} find f

$$
\mathrm{f}=\left(\mathrm{x}_{0} \mathrm{x}_{\mathrm{i}}\right) /\left(\mathrm{x}_{0}+\mathrm{x}_{\mathrm{i}}\right)
$$

- Given f and x_{i} find x_{0}

$$
\mathrm{x}_{\mathrm{o}}=\left(\mathrm{x}_{\mathrm{i}} \mathrm{f}\right) /\left(\mathrm{x}_{\mathrm{i}}-\mathrm{f}\right)
$$

- Example

$$
\begin{aligned}
x_{0} & =49 \mathrm{~mm}, \mathrm{f}=30 \mathrm{~mm} \text { (positive for converging lens) } \\
\mathrm{x}_{\mathrm{i}} & =77 \mathrm{~mm} \\
\mathrm{~s}_{\mathrm{o}} & =20 \mathrm{~mm} \\
\mathrm{~s}_{\mathrm{i}} & =-32 \mathrm{~mm} \text { (negative for inverted image) }
\end{aligned}
$$

- Constructing imaging from multiple lenses
- Construct image from 1st lens
- Add rays that will be useful for the 2nd lens construction (the 3 rays)
- Complete ray tracing with these 3 rays through the 2 nd lens to find final image

(c)

FIGURE 3.32

Construction by ray tracing of the final image of a compound lens consisting of two converging lenses, We have two converging lenses. We have indicated all the focal points and the focal length of each lens. (a) Construct the intermediate image, due to the first lens alone. (b) Find the three rays incident on lens 2 that are needed for constructing the image it forms. (c) Us ray tracing rules on lens 2 to find the final image.

Power of lenses

- The power of a lens is its inverse focal length (how strongly it can focus parallel light)
- $\mathrm{P}=1 / \mathrm{f}$
- By convention, the units of power are measured in diopters
- It is numerically equal to the inverse of the focal length of the lens, measured in meters.
- Examples:
- A converging lens with a 1 m focal length has a power of 1D
- A lens with a power of -5 D is a diverging lens with a focal length of -0.2 m
- A doubly concave lens (diverging) with a focal length of - 2 m has a power of -0.5 D
- The powers of adjacent lenses add to form net power

Fresnel lens principle

FIGURE 3.29
(a) A thick, converging lens (with one flat side). (b) Parts of the glass of this lens that have no essential effect on the bending of light (shown shaded). Remember that these sections are really rings oriented perpendicular to the paper. (c) After removing the nonessential glass and rearranging the lens, you get a Fresnel lens.

Fresnel lens applications

- Fresnel lens images scene onto ground glass screen at ~ focal distance
- Light source illuminates ground glass
- Mask the screen to block light that would go to undesired locations

Aberrations

- Chromatic Aberration
- Spherical Aberration
- Field angle effects (off-axis aberrations)
- Field curvature
- Coma
- Astigmatism
- Distortion

Chromatic aberration and

 doublets

FIGURE 3.33

2003 April 29
(a) Chromatic aberration of a converging lens. (b) Elimination of this aberration by an achromatic doublet.

Spherical aberration from a lens

FIGURE 3.34

Spherical aberration in a converging lens. The inner rays, I, closest to the axis, have the farthest focal point, F_{i}. The outer rays, O, are bent most, so they have the nearest focal point, $F_{O}{ }^{\prime}$. The rays in the middle, M, are focused between these extremes, at $F_{M}{ }^{\prime}$.

Spherical aberration in a concave mirror.

Parabolic mirrors have no

soherical abercation (on axis)

FIGURE 3.36
A parabolic reflector has no aberrations if the object is on the axis and very far away.

Ellipsoidal reflector

FIGURE 3.37
An ellipsoidal spotlight.

Spherical aberration in glass of

 water
FIGURE 3.38

(a) Spherical aberration in a water glass lens (side and top views). (b) Photograph of spherical aberration pattern in a teacup reflector.

(b)

Field curvature from lens

FIGURE 3.39
Curvature of field of a converging lens.

Comatic aberration

FIGURE 3.40
A small circular spot of light on the axis is projected by a lens to form the faithful image on the left (no coma). An identical off-axis spot of light produces the image with coma, on the right.

Astigmatism aberration

FIGURE 3.41

The astigmatic image of a point object in three planes, perpendicular to the axis. When the screen is at A, the image is a vertical line, and it is a horizontal line when the screen is at C. A screen at B gives the smallest circular image. (The photograph was taken by triple exposure, changing the position of a single screen between exposures.)

2003 Ap

- Upper image shows barrel distortions
- Lower image shows pincushion distortion

[^0]: 2003 April 29

