Astronomy 80B: Light 5 units, satisfies quantitative req Q and T2 Spring 2003

Time:	10:00-11:45 Tu and Th			
Place:	Thimann 1 (capacity ~ 100)			
Professor:	Jerry Nelson			
office:	215 Center for Adaptive Optics (below Nat Sci 2)			
phone	459-5132			
email	jnelson@ucolick.org			
web page:	http://www.ucolick.org/~jnelson/ay80b/index.html			
office hours:	9-10:30am Wednesday			
TA:	Stefan Meyer			
office:	ISB 292			
phone:	459-5691			
email	sm98@physics.ucsc.edu			
office hour:	10-12am Tuesday			
discussion sect	tion: 5-6pm Tuesday, 356 ISB			
	3-4pm Wednesday, 165 ISB			

No.	Date	Subject	Reading	homework due
1	1 April	Fundamental properties of light	Ch 1, Ap A, I	
2	3 April	waves, light sources, reflection	Ch 2, Ap B	
3	8 April	reflection, refraction		
4	10 April	more refraction		#1 set
2	15 April	QUIZ #1, mirages		
6	1 / April	dispersion, mirrors and lenses	Ch 3, Ap C, D	. E. F #2 set
/	22 April	atmospheric effects, raindows, etc	Ch 4	#2 cot
0	24 April 20 April	photography and cameras	CII 4	#5 Set
10	29 April 1 May	OUIZ #2 human eve and vision	Ch 5	#4 set
11	6 May	vision optical instruments	Ch 6	11- 500
12	8 May	optical instruments	ch c	#5 set
13	13 May	students read draft papers		
14	15 May	field trip		#6 set
15	20 May	vision, depth perception	Ch 8	
16	22 May	QUIZ #3, color	Ch 9	#7 set
17	27 May	color		
18	29 May	waves, light sources, lasers	Ch 15,	#8 set
19	3 June	waves, photons		
20	5 June	wave optics	Ch 12, App K	#9 set
	11 June	final exam, 4-/pm		

Text: Seeing the Light: Optics in nature, Photography, Color, Vision and Holography by Falk, Brill, Stork

Tools: You will need a ruler and straightedge for this class and graph paper or quadrille paper is recommended for homework

Grading: 30% homework, 25% quizzes (45 minutes each), 25% final exam, 10% paper, 10% instructor and TA opinion. In addition, student must attend at least 5 sections in order to pass.

Homework: homework every week, due at start of class on Thursday, typically 10 problems, only a random subset of each assignment will be graded.

Paper: A paper will be required during the course. The topic will be some optical phenomenon (natural or manmade) selected by the student. The aim is to learn to make accurate and insightful observations, report them clearly, and to explain them in light of what you have learned in the class. A first draft of the paper will be submitted and comments will be returned to you, and a final draft will then be submitted. Paper length should be 500-1000 words and should include figures to explain what was seen and why. A list of example topics will be given out and a "typical" paper will be available as a style guide.

Field trip: options:

Visit to controlled laser fusion facility at LLNL and adaptive optics facility. We will go in vans or carpool. The trip will take most of the day. Alternate is to visit Lick Observatory and see and use a large telescope