Inside-out quenching: a z=0 perspective from MaNGA

Francesco Belfiore

University of Cambridge → University of California Santa Cruz

Quenching and the galaxy 'Main Sequence'

How steep is the SFMS?

$\beta \equiv \frac{d \log \text{sSFR}}{d \log M_*} \quad \beta = [-0.5, -0.1]$

Brinchmann+2004, Salim+2007, Whitaker+2012, Renzini & Peng 2015, FB+2017a

Do discs grow at constant sSFR (β =0)?

Do discs grow at constant sSFR (β=0)?

The role of bulges in the transition population

Green valley galaxies (i.e. galaxies below the SFMS) have larger Sersic n, B/T etc

Wuyts+2011, also Schiminovich+2007, Morselli+2016

How do their discs behave?

I.e. are Green Valley galaxies red bulges with blue discs?

The role of bulges in the transition population

Discs are getting redder at the high-mass end of the SFMS and below the SFMS

Resolving galaxies: the high-z view

galaxies @ z~2

have lower sSFR

The landscape of resolved spectroscopy

We need a spectroscopic z ~ 0 baseline

Current low-z IFS surveys CALIFA ~ 600 galaxies SAMI ~ 3000 galaxies MaNGA ~ 10000 galaxies

Overview paper: Bundy+2015

The MaNGA survey at a glance

SDSS 2.5m telescope

MaNGA fibre bundles

32.5 arcsec

+ ~ 100 single fibres for sky subtraction

MaNGA: survey at a glance

- Sample flat in stellar mass (> 10⁹ M_☉).
- Uniform spatial coverage in terms of R_e (to 1.5 Re for 67% and 2.5 Re for 33% of the sample)
- Median redshift z=0.03

i-band absolute magnitude (Mi)

MaNGA: survey at a glance

- Multiplexed: 17 IFU per field (*plate*), a range of IFU bundle sizes (19, 37, 61, 91, 127), each fiber is 2" on sky.
- Spatial PSF ~ 2.5 arcsec , ~ kpc-resolution.

sSFR profiles in MaNGA

~500 star forming (blue cloud) galaxies

- SFR from extinction corrected Hα (using Balmer decrement)
 - M_{*} from spectral fitting of the continuum
- SFR only calculated for spaxels classified as SF using classical BPT diagram

1. Σ_{sSFR} decreases with M_{*} even in the outer regions of discs (β <0).

2. Strong suppression in sSFR in the centres of massive galaxies.

FB+ in prep

Centrally Quiescent galaxies

EW(Hα) = 3 Å good discriminator between star formation and emission from old stars (LIERs)

Centrally Quiescent galaxies

Cid Fernandes+ 2011, SDSS, See also FB+2016 with MaNGA

EW(Hα) = 3 Å good discriminator between star formation and emission from old stars (LIERs)

Conclusions

- MaNGA observes decreasing Σ_{sSFR} with M_{*} even in the outer regions of discs (β<0)
- 2. Central regions of massive galaxies show suppressed sSFR (similar to high-z?)
- 3. Green Valley galaxies have lower sSFR in their discs than blue cloud galaxies of same M_{*}
- 4. Centrally quiescent galaxies live at the highmass end of the Green Valley and Blue Cloud

sSFR from Brinchmann+2004

sSFR profiles controlling for Concentration

Ø

$MaNGA \ H\alpha$

Quenching and the galaxy 'Main Sequence'

How steep is the SFMS?

 $\beta \equiv \frac{d \log \text{sSFR}}{d \log M_*} \quad \beta = [-0.5, -0.1]$

Brinchmann+2004, Salim+2007, Whitaker+2012, Renzini & Peng 2015, FB+2017a

How about the passive population ?

Log (sSFR) < -12

SFR inferred from stellar population indices (D4000), sensitive to long timescales, best interpreted as upper limits

See also Feldmann 2017