MApping the Most Massive Overdensities Through Hydrogen (MAMMOTH)

Zheng Cai (Hubble Fellow, UCSC)

Xiaohui Fan (Steward), J. Xavier Prochaska (UCSC), Ann Zabludoff (Steward), Nobunari Kashikawa (NAOJ), Yujin Yang (KASI), Yi-Kuan Chiang (JHU), Sebastien Peirani (IAP), Xian-Zhong Zheng (PMO) + YOU

MApping the Most Massive Overdensity Through Hydrogen

MApping the Most Massive Overdensities Through Hydrogen (MAMMOTH)

z=2-3

Lya forest

Zheng Cai (Hubble Fellow, UCSC)

Xiaohui Fan (Steward), J. Xavier Prochaska (UCSC), Ann Zabludoff (Steward), Nobunari Kashikawa (NAOJ), Yujin Yang (KASI), Yi-Kuan Chiang (JHU), Sebastien Peirani (IAP), Xian-Zhong Zheng (PMO) + YOU

MApping the Most Massive Overdensity Through Hydrogen

Different great efforts of tracing high-*z* matter overdensities:

1 Use biased halos, such as QSOs/sub-mm galaxies/radio galaxies, small duty cycles, maybe highly incomplete

2 Galaxy redshift survey (e.g., Steidel et al. 1998), observationally expensive survey volumes are often limited

Different great efforts of tracing high-*z* matter overdensities:

1 Use biased halos, such as QSOs/sub-mm galaxies/radio galaxies, small duty cycles, maybe highly incomplete

2 Galaxy redshift survey (e.g., Steidel et al. 1998), observationally expensive survey volumes are often limited

A more complete (un-biased) technique to search for galaxy overdensities from a larger volume will be excellent

Lyman alpha absorption tracing underlying matter overdensities Cai et al. (2016) ApJ, 833, 135

Coherently strong Lya absorption (CoSLAs) trace most massive overdensities.

Cai et al. (2016) ApJ, 833, 135

Zheng Cai, UCSC, Aug 5

120 140 160 180 200 220 240 260

MAMMOTH protocluster one: BOSS1441 Overdensity at z=2.32+/-0.04 selected from SDSS/BOSS Lya survey (Gpc³ volume)

IGM absorption + Multi-quasar within 40Mpc at z=2.32+/-0.02

rare HI absorption group tracing an overdensity at massive end

ZHENG CAI^{1,2,9}, XIAOHUI FAN², FUYAN BIAN³, ANN ZABLUDOFF², YUJIN YANG⁴, J. XAVIER PROCHASKA¹, IAN MCGREER², ZHEN-YA ZHENG^{5,6}, NOBUNARI KASHIKAWA⁷, RAN WANG⁸, BRENDA FRYE², RICHARD GREEN², LINHUA JIANG⁸

Cai et al. (2017b) ApJ 839, 131

BOSS1441 is the first large scale structure with a LAE overdensity of ~11 on (~20 Mpc)^3 volume at z>2.

Zheng Cai, UCSC, Aug 5

ZHENG CAI^{1,2,9}, XIAOHUI FAN², FUYAN BIAN³, ANN ZABLUDOFF², YUJIN YANG⁴, J. XAVIER PROCHASKA¹, IAN MCGREER², ZHEN-YA ZHENG^{5,6}, NOBUNARI KASHIKAWA⁷, RAN WANG⁸, BRENDA FRYE², RICHARD GREEN², LINHUA JIANG⁸

Cai et al. (2017b)

LBT/MODS Spectroscopic Follow-ups Observations on BOSS1441

ZHENG CAI^{1,2,9}, XIAOHUI FAN², FUYAN BIAN³, ANN ZABLUDOFF², YUJIN YANG⁴, J. XAVIER PROCHASKA¹, IAN MCGREER², ZHEN-YA ZHENG^{5,6}, NOBUNARI KASHIKAWA⁷, RAN WANG⁸, BRENDA FRYE², RICHARD GREEN², LINHUA JIANG⁸

Cai et al. (2017b)

MAMMOTH protoclusters: BOSS1244 and BOSS1542 at z=2.20+/-0.03

CFHT/WIRcam $H\alpha$ emitters down to L*

Together with BOSS1441, we construct a sample of three massive LSS at z > 2

Cai et al. in prep, An et al. in prep.

HST (cycle 24, 25) observations (25-orbit, PI: Cai) awarded: Deep IR imaging on three MAMMOTH overdensities to study density-morphology relation. (stay tuned)

Is our technique a more effective way of finding Lyman alpha blobs?

Red circle diameter = 15"

Xu, Cai et al. in prep

Is our technique a more effective way of finding Lyman alpha blobs?

Red circle diameter = 15"

Xu, Cai et al. in prep

Zheng Cai, UCSC., Dec 21

DISCOVERY OF AN ENORMOUS LY α NEBULA IN A MASSIVE GALAXY OVERDENSITY AT z=2.3

ZHENG CAI^{1,2,11}, XIAOHUI FAN², YUJIN YANG³, FUYAN BIAN⁴, J. XAVIER PROCHASKA¹, ANN ZABLUDOFF², IAN MCGREER², ZHEN-YA ZHENG^{5,6}, RICHARD GREEN², SEBASTIANO CANTALUPO⁷, BRENDA FRYE², ERIKA HAMDEN⁸, LINHUA JIANG⁹, NOBUNARI KASHIKAWA¹⁰, RAN WANG⁹

The first large scale structure with an overdnesity on $(15 \text{ Mpc})^3$ volume 10.8 at z>2.

Cai et al. (2017b) ApJ 839, 131

Zheng Cai, UCSC, Aug 5

MAMMOTH

LBT/MODS Observations: Huge kinematics never seen before in other nebulae

Cai et al. (2017) ApJ, 831, 71

gas outflow model (AGN feedback)

MAMMOTH-1 is powered by a type-II AGN at z=2.3

LBT/LUCI spectrum, 2.5-hour integration:

LBT Argos ground-layer AO commissioning observations

Cai + in prep.

MAMMOTH-1 H-alpha emission, FWHM = 0.25-0.3" in K-band

K-band (LBT/Argos)

Br-Gamma filter (LBT/Argos)

K-band (Subaru, 0.5" seeing)

Comparing Ha with Lya, the Lya escape fraction is 100% — no dust

MAMMOTH

Zheng Cai

Each sub-figure has a velocity bin of 300 km/s

from -2000 — +2000 km/s present all pixels with flux

> 2-sigma level

MAMMOTH

IFU (cosmic web imager) observations of MAMMOTH-1 nebula (see Cai+ 2017a, Cai+ in prep.)

ZHENG CAI^{1,2,9}, XIAOHUI FAN², FUYAN BIAN³, ANN ZABLUDOFF², YUJIN YANG⁴, J. XAVIER PROCHASKA¹, IAN MCGREER², ZHEN-YA ZHENG^{5,6}, NOBUNARI KASHIKAWA⁷, RAN WANG⁸, BRENDA FRYE², RICHARD GREEN², LINHUA JIANG⁸

Zheng Cai, UCSC, Aug 5

LBT/MODS long-slit Observations: Huge kinematics

Cai et al. (2017) ApJ, 831, 71

IFU (cosmic web imager) observations of MAMMOTH-1 nebula (see Cai+ 2017a, Cai+ in prep.)

Summary

- Strongest Lyman alpha absorption (group) can be a very effective way to trace extreme overdensities/proto-clusters from huge survey volume —> not rely on existing sources, more unbiased way.
- The next few years is a golden age, with HSC, DESI, PFS, HETDEX, the confirmed protoclusters will increase from a few to a statistical sample. (MAMMOTH got 3.5-night Subaru/HSC time in 2017B).
- We systematically selected a few MAMMOTH fields at z=2.2 2.4 from Gpc³ survey volume. spectroscopic confirmed three most massive overdensities using Keck, LBT spectroscopy; will soon be covered by deep *HST* and *Chandra* imaging.
- We identified a sample of ultraluminous Lyman alpha nebulae. With IFU (CWI, KCWI), this unique sample will reveal IGM galaxy interactions, ICM evolution.
- MAMMOTH can provide new constraints to structure formation, ICM evolution, through absorption and emission. Further, inspired by many great talks in the conference, we still need some crucial multi-wavelength observations: e.g., sub-mm follow-up for better understanding galaxy evolution.

MAMMOTH overdensiteis represents COMA-progenitors

	bias (b)	$δ_{g}$ (15 cMpc)	δ m (15 cMpc)
BOSS1441 (spec confirmed)	2	10.8	3.4
BOSS0034	2	8.3	3.1
BOSS1244 (spec confirmed)	2	6.6	2.7
BOSS1542 (spec confirmed)	2	6.4	2.7
BOSSO112	2	5.8	2.4
BOSS2335	2	4.8	2.0
BOSS1513	2	2.9	1.5

MAMMOTH overdensiteis represents COMA-progenitors

	bias (b)	$δ_{g}$ (15 cMpc)	δ m (15 cMpc)
BOSS1441 (spec confirmed)	2	10.8	3.4
BOSS0034	2	8.3	3.1
BOSS1244 (spec confirmed)	2	6.6	2.7
BOSS1542 (spec confirmed)	2	6.4	2.7
BOSSO112	2	5.8	2.4
BOSS2335	2	4.8	2.0
BOSS1513	2	2.9	1.5

MAMMOTH-1 is powered by a type-II AGN at z=2.3

LBT/LUCI spectrum, 3-hour integration:

