Violent Disk Instability: Clump Formation and Survival

Avishai Dekel The Hebrew University of Jerusalem & UCSC

CANDELS, UCSC, July 2017

Outline

- 1. Clump formation: stimulated violent disk instability (VDI) Q>1 - compressive turbulence by compressive tides
- 2. Clump evolution: survival versus disruption theory vs observations

Guo+ 17 CANDELS 3187 clumps in 1269 galaxies, z=0.5-3

High-z Clumpy Disks

Most hi-z SFGs are Rotating Turbulent Disks

Wisnioski+15, Stott+16, Contini+16

AMR Cosmological Simulations

Cosmological simulations VELA (Ceverino, Dekel, Primack) zoom-in individual galaxies, ART code (Kravtsov, Klypin) 25 pc resolution, stellar+SN+radiative fdbk (6x35 galaxies)

Isolated galaxies, 1-10 pc resolution, RAMSES (Bournaud+)

Collaborators on disk instability: Ceverino, Forbes, Guo, Mandelker, Inoue Bournaud+, Burkert+, Teyssier+, Klypin+, Krumholz+, Primack+, Genzel+, Faber & Koo+, Carollo+, ...

Clump Formation Violent Disk Instability-Nonlinear and Stimulated

Dekel, Sari, Ceverino 2009; Ceverino+ 2010, 2012 Mandelker+ 2014, 2016; Moody+ 2014; Forbes+ 2014a,b Inoue+ 2015, Mandelker+ 2017

Violent Disk Instability (VDI) at High z

Ceverino+ VELA (ART-AMR) cosmological simulations at 25pc resolution

A typical massive SFG at z~2: gas-rich, highly perturbed, clumpy rotating disk: H/R ~ σ/V ~ f_{cold} ~ 0.2

High Gas Fraction -> Violent Disk Instability

Clumps by Toomre Instability?

Toomre is linear analysis of small fluctuations, but cosmological disks are continuously, nonlinearly perturbed

Q<1 in clump regions because Σ is high after collapse -> not very meaningful

-> Measure Q in proto-clump regions, where the local perturbations may be small

Find in simulations

Isolated: $Q\sim1$ Cosmological: $Q\sim1-3$ high σ on small <100pc scales

e.g. Bournaud+ ~10pc res.

Inoue+16 ~25pc res.

Distribution of Q in Proto-clumps

Stimulated Non-linear Instability

$$Q \propto \frac{\sigma \ \Omega}{\Sigma}$$

Tentative ideas for instability with Q>1

- Rapid decay of turbulence (Elmegreen)
 no time for pressure buildup against clump self-gravity
- Clumps generate new clumps
- Irregular rotation counter-rotating streams no centrifugal force against clump self-gravity
- Compressive mode of turbulence (Renaud+; Mandelker+)
 - triggers local collapse, while σ is high, before gravity takes over
 - induced by tidal compression, generated by external perturbers (e.g. mergers)

Stimulated Non-linear Instability

Tentative ideas for instability with Q>1

- Rapid decay of turbulence (Elmegreen)
 no time for pressure buildup against clump self-gravity
- Clumps generate new clumps
- Irregular rotation counter-rotating streams
 no centrifugal force against clump self-gravity
- Compressive mode of turbulence (Renaud+; Mandelker+)
 - triggers local collapse, while σ is high, before gravity takes over
 - induced by tidal compression, generated by external perturbers (e.g. mergers)

Excessive compressive modes trigger collapse (help gravity) -> instability with high σ , Q~2-3

Federrath, Roman-Duval, Klessen, Schmidt & Mac Low (2010)

Federrath, Roman-Duval, Klessen, Schmidt & Mac Low (2010)

Compression Modes of Turbulence in a Merger

Excessive Compressive Mode of Turbulence by Compressive Tides (red) in Mergers

t = -100.0 Myr

Compressive Mode of Turbulence

Find in simulations:

In isolated galaxies: $E_{compress}/E_{tot} \sim 0.16$ -> standard equilibrium

In cosmological galaxies: $E_{compress}/E_{tot} \sim 0.5$ -> excessive compression

Conclusions: Clump Formation Stimulated Nonlinear Violent Disk Instability

Inoue+ 16; Mandelekr+17b

Cosmological disks are continuously nonlinear, and externally perturbed – not linear Toomre instability

In protoclump regions in cosmological simulations Q \sim 1-3, while Q \sim 1 in isolated disks

Excessive compressive turbulence, induced by tides, initiates clump collapse before gravity takes over while Q (σ) is high

See Nir Mandelker's talk

Clump Survival or Disruption?

Mandelker + 17 Dekel, Mandelker, Bournaud + 17 (in prep.)

VELA Simulations Ceverino, Dekel, Primack

Massive In-situ Clumps in High-z Disks: Long-lived or Short-lived?

<u>Scenario 1: "bound clumps"</u>

- Clumps >10⁸ M_ $_{\odot}$ are compact, bound and survive feedback. Migration to center in ~300 Myr

-> medium lifetimes 0-500 Myr, gradients of age, mass, sSFR

- Clumps ${<}10^8 M_{\odot}$ are diffuse and elongated short lived
- Ex-situ merged clumps: massive and old

Dekel+ 09; Ceverino+10,12; Bournaud+14; Mandelker+14,17; Dekel+Krumholz 12,13

Scenario 2: "Xmas tree"

Clumps are unbound, disrupt by feedback in a dynamical time <50 Myr -> short lifetimes <50 Myr, no migration -> weaker gradients (due to contamination?) Genel+12; Murray+10; Hopkins+12; Oklopcic+16

Scena violates observations

Bound massive clumps de not form (in some isolated-galaxy simulations) Mayer, Tamburello+ 16-17

Feedback model? Resolution? External stimulation is needed?

Clump Migration in a Few Orbits

The Effect of SN+Radiative Fdbk on Clumps

Mandelker+17 ART-AMR cosmological simulations, 25pc resolution

Short-lived vs Long-lived Clumps

Bathtub Model for a Bound Clump in a Disk

Dekel, Mandelker, Bournaud 17

Bathtub Model for a Bound Clump in a Disk Dekel, Mandelker, Bournaud 17 $t_{\rm mig} \approx 10 t_{\rm dyn} (M_{\rm Toomre} / M_{\rm clmp})$ Migration $M_{\text{gas}} = M_{\text{acc}} - \mu M_{\text{sfr}} - M_{\text{out}}$ $M_{\text{star}} = \mu M_{\text{sfr}} - M_{\text{tide}}$ Bathtub $\dot{M}_{\rm acc} = \alpha \rho_{\rm disk} \pi R_{\rm tide}^2 \sigma_{\rm disk} = 0.5 \alpha t_{\rm d}^- M_{\rm clmp}$ Accretion parameters $\overline{\dot{M}}_{\rm sfr} = \varepsilon_{\rm ff} t_{\rm ff}^{-1} M_{\rm gas} = \varepsilon_{\rm d} t_{\rm d}^{-1} M_{\rm gas}$ SFR $\alpha \approx 0.2, \varepsilon_{\rm d} \approx 0.1$ $\dot{M}_{\rm out} = \eta_{\rm g} \dot{M}_{\rm sfr}$ $\dot{M}_{\rm tide} = \eta_{\rm s} \dot{M}_{\rm sfr}$ Outflow $\eta_{\rm s} \approx 1, \eta_{\rm s} \approx 0$ $\dot{M}_{\rm gas} = \dot{M}_{\rm acc} (M_{\rm halo}) - (\mu + \eta) \mathcal{E}_{\rm d} t_{\rm d}^{-1} M_{\rm gas}$ For a galaxy $M_{\rm gas}(t) \propto \dot{M}_{\rm acc}(1 - e^{-t/\tau}) \longrightarrow QSS$ $\dot{M}_{\rm gas} = 0 \quad \text{SFR} \propto \dot{M}_{\rm acc}$ Solution $\dot{M}_{\rm gas} = 0.5\alpha t_{\rm d} (M_{\rm star}) + [0.5\alpha - (\mu + \eta)\varepsilon_{\rm d} t_{\rm d}^{-1}] (M_{\rm gas})$ For a clump $M_{gas}(t) = m_1 e^{t/\tau_1} + m_2 e^{-t/\tau_2} \qquad \begin{array}{c} \tau_i^{-1}(\alpha, \varepsilon_d, \eta_g) \text{ roots of a polynomial} \\ m_i \text{ by initial } M_{gas,in} \end{array}$ Solution

Model vs Cosmological Simulations

Model vs Cosmological Simulations

Model vs Isolated Simulations

Gradients of Clump Properties

Mandelker+17 ART-AMR cosmological simulations, 25pc resolution

The Xmas-tree Scenario

The Xmas-Tree Scenario

Genel et al. 11

Guo+ 17 CANDELS 3187 clumps in 1269 galaxies, z=0.5-3

High-z Clumpy Disks

Observed Clump Gradients

Guo+17 CANDELS

Age

Observed Clumps vs Age

Guo+17 CANDELS

Observed Clumps vs Age

Guo+17 CANDELS

Conclusions: Clump Survival vs Disruption

- Long-lived clumps: massive >10⁸M_☉, bound, compact & round Lifetimes 0-500 Myr. Gradients due to migration (plus short-lived clumps, and old massive ex-situ clumps)
- Short-lived clumps (Xmas-tree): unbound, diffuse, elongated Lifetimes <50Myr. Weak gradients due to disk stars
- Observed Clumps at z=0.5-3 (CANDELS) compact & round ? Ages 0-500 Myr and strong gradients Seem consistent with bound clumps
- A bathtub toy model reproduces the clump evolution in simulations and observations. Can be useful.