Structure Within the Ridgeline of Quenched SDSS Galaxies

Yifei Luo, S. M. Faber, Y. C. Guo, Aldo Rodriguez-Puebla, D. C. Koo, Zhu Chen, Guillermo Barro, Marc Huertas-Company, Hassen Yesuf, Sandro Tacchella

> CANDELS Meeting UCSC August 4, 2017

New parameter Σ_1 : Central stellar density within 1 kpc

The ridgeline in R_e is evolving <u>up</u>.

The ridgeline in R_e is evolving <u>up</u>.

Confirm mapping between ridgelines

Higher Σ_1 galaxies have smaller R_e

Higher Σ_1 galaxies have smaller R_e

SSFR in slices through the ridgeline, $\Delta \Sigma_1$. Structure on the quenched ridgeline and in the GV.

Smaller galaxies are more quenched

Smaller quenched galaxies quenched earlier

Galaxies do not rush through the GV!

Conclusions

- R_e -M* maps onto Σ_1 -M_{*} for star-forming galaxies (n ~ 1)
- Although the quenched ridgeline is narrow, structure lurks within it.
- This structure reflects progenitor bias the evolution of the ridgeline after quenching does not quite keep up with the locations of newly quenched galaxies
- The instantaneous ridgeline is about half as narrow (in Σ_1 and R_e) as the total ridgeline. Same for the GV.
- This is the second step in relating stellar population age to structure. The first was identifying the ridgelines. Now we start to resolve different quenching times within the quenched population.
- What are the implications for structure in and around the Fundamental Plane of quenched galaxies???