"Lessons learned" from JWST proposal preparation

Steve Finkelstein

- Overview of instruments
- Deadlines
- ERS program
- "Surprises"

NIRCam

Image: F277W + F356W + F444W

GrismR + F356W Row Dispersion

GrismC + F356W Column Dispersion

NIRSpec

MIRI

Imager

MRS (IFU)

LRS (slit or slitless)

Name	λ (μm)	λ/Δλ	Point-Source Detection Limit ¹	Extended Source Detection Limit ¹	Point-Source Saturation Limit ²
F560W	5.6	5.0	0.2 µJy	0.22 µJy arcsec -2	7 mJy
F770W	7.7	3.5	0.28 µJy	0.26 µJy arcsec -2	3 mJy
F1000W	10.0	5.0	0.7 µJy	0.53 µJy arcsec -2	8 mJy
F1130W	11.3	16.0	1.7 µJy	1.2 µJy arcsec -2	35 mJy
F1280W	12.8	5.0	1.4 µJy	0.83 µJy arcsec -2	15 mJy
F1500W	15.0	5.0	1.8 µJy	0.93 µJy arcsec -2	18 mJy
F1800W	18.0	6.0	4.3 µJy	1.9 µJy arcsec -2	34 mJy
F2100W	21.0	4.0	8.6 µJy	3.3 µJy arcsec -2	50 mJy
F2550W	25.5	6.0	28 µJy	9.1 µJy arcsec ⁻²	105 mJy

NIRISS

Aperture Masking Interferometry Non-Redundant Mask (NRM) + Medium-Band "Red" Filters 7-hole aperture mask with 21 distinct ("non-redundant") separations ("baselines")

(Interferogram)

NIRISS AMI enables exoplanet detection at 3.8, 4.3, and 4.8 μm around stars as bright as M'~4, reaching 10⁻⁴ contrast at separations of 70–400 milli-arcseconds. It provides lower contrast at 2.8 μm with the F277W filter.

Transform

Image reconstruction is also enabled.

Image: F115W

Spectra: GR150C, F115W

Spectra: GR150R, F115W

JWST Calendar

Dec 2020 Nov 2019

Cycle 2 Proposal Deadline Cycle 2 Call for Proposals

May 2019	JWST Cycle 1 start
0ct	JWST Launch!
Mar 2	Deadline for GO Cycle 1
2018 Nov 30	General Observer (GO) Cycle 1 Call for Proposals
Aug 18	Deadline for DD-ERS proposals
2017 May 19	DD-ERS Call for Proposals
2017 Mar 3	Deadline for DD-ERS Notices of Intent
Jan 6	Early Release Science (DD-ERS) Call for Notices of Intent
2017	

Today

JWST Calendar

Dec 2020 Nov 2019

Cycle 2 Proposal Deadline Cycle 2 Call for Proposals

May 2019	JWST Cycle 1 start
Oct	JWST Launch!
Mar 2	Deadline for GO Cycle 1
2018 Nov 30	General Observer (GO) Cycle 1 Call for Proposals
2017 Aug 18	Deadline for DD-EBS proposals
2017 May 19	DD_EDC_Call for Droposale
2017 Mar 3	
2017 Jan 6	Deadline for DD-ERS Notices of Intent
2017	Early Release Science (DD-ERS) Call for Notices of Intent

Today

Major Caveat

Early Release Science

- Up to 500 hr will be awarded to up to 15 programs.
- The DD-ERS program was designed to provide data over a wide range of observing modes *rapidly* to the community, to prepare for Cycle 2 proposals.
 - <u>This</u> is the major factor to be evaluated by the TAC. The science has to be good, but enabling Cycle 2 science and proposals is the most important thing.

DD ERS Proposal Deacline	August 18, 2017, 8pm ET
GTO APT Technical Reviews and Revisions End	September 15, 2017
APT version 25.4 Released (further updates for Cycle 1 GO Cal)	November 1, 2017
DD ERS Results Released	Novembor 2017
Release of the Cycle 1 Call for GO Proposals	November 30, 2017
Formal OD ERS Budget Proposals	Early December 2017
GTO APT Files Fublished (public)	December 15, 2017

Early Release Science

- Up to 500 hr will be awarded to up to 15 programs.
- The DD_ERS program was designed to provide data over a wide.

A subset of CANDELS people plus others in the community are collaborating on the Cosmic Evolution Early Release Science (CEERS) Survey.

Briefly, our goal is to demonstrate efficient survey operations with JWST, providing imaging and spectroscopic data sufficient for any science goal at 3 < z < 12.

APT version 25.4 Released ('urther updates for Cycle 1 GO Cal)	November 1, 2017
DD ERS Repults Released	Novembor 2017
Release of the Cycle 1 Call for GO Proposals	November 30, 2017
Formal CD ERS Budget Proposals	Early December 2017
GTO APT Files Published (public)	December 15, 2017

Overhead

- JWST overheads are surprisingly high. A maximally efficient program typically has only ~70% science. Some examples:
 - All programs pay a ~16% tax to account for slews from object to object.
 - Minimizing filter changes: If you are mosaicing, you need to do all pointings in one filter prior to swapping filters

Observability

- JWST can only observe ~half of the sky at once, and depending on the ecliptic latitude, the observability can be even more restricted. The exception is the North and South ecliptic poles, which are always observable.
 - NEP is good, and is being targeted by GTOs. SEP not so great as its near the SMC.
- If you're restricted to a particular roll angle, you only have a few week period.
- Lesson don't assume you can observe at the right PA it may be that the PA you need doesn't fall during the window of observability.

Sensitivity & Background

NIRSpec

NIRCam

Lesson - The sensitivity can drop off quite rapidly at the blue and red end of instruments.

Quantized Exposure Times

Table 1. Available NIRCam MULTIACCUM readout patterns

Readout pattern	Samples per group (NSAMPLES = NFRAMES + NSKIP)	Frames averaged in each group (NFRAMES)
RAPID	1	1
BRIGHT1	2	1
BRIGHT2	2	2
SHALLOW2	5	2
SHALLOW4	5	4
MEDIUM2	10	2
MEDIUMB	10	8
DEEP2	20	2
DEEP8	20	8

NIRCam team recommends 4-7 groups per exposure: ~700-1400 sec exptimes

Then you will dither, so you'll end up with 3+ of these exposures.

This quantization of exptime makes for less program flexibility

Module and Chip Gaps

Field of View

Coordinated Parallels

Allowed for Cycle 1:

- 1. NIRCam Imaging and MIRI Imaging,
- 2. NIRCam imaging and NIRISS Wide-Field Slitless Spectroscopy (WFSS),
- 3. NIRCam imaging and NIRISS imaging (NIRCam must be the prime instrument),
- 4. NIRCam imaging and NIRSpec MOS (NIRSpec must be the prime instrument),
- 5. MIRI imaging and NIRISS WFSS.

Coordinated Parallels

Allowed for Cycle 1:

- 1. NIRCam Imaging and MIRI Imaging,
- 2. NIRCam imaging and NIRISS Wide-Field Slitless Spectroscopy (WFSS),
- 3. NIRCam imaging and NIRISS imaging (NIRCam must be the prime instrument),
- 4. NIRCam imaging and NIRSpec MOS (NIRSpec must be the prime instrument),
- 5. MIRI imaging and NIRISS WFSS.

When doing parallels, cannot do things like dither or change filters on only one instrument. Means that exposure times are linked.

> Notice: No grism! The exception is that one can do NIRCam grism on the long-WL side, and imaging on the short-WL side.

NIRSpec MSA

- While there is an enormous number of microshutters, the FoV is small (~3.6'x3.6' w/ gaps), and the spectra can take a decent amount of detector space.
 - Typical numbers NIRSpec GTO team says:
 - ~55 objects per config w/ R~1000 or 2700 grating.
 - ~190 objects per config w/ R~100 prism.
 - High source density is a must!
 - Multi-science proposals are also a good idea.

Questions?