

Scaling relations involving cold gas in high-z galaxies

Jonathan Freundlich

With Avishai Dekel, Sharon Lapiner, Françoise Combes, Linda Tacconi, Reinhard Genzel, Santiago Garcia-Burillo, Roberto Neri & the PHIBSS consortium

Star formation across cosmic time

PHIBSS/PHIBSS2*: How does star formation depend on the available cold molecular gas and its evolution?

- ► A statistical samples of more than 170 MS galaxies at different redshifts
- Well-studied parent samples (CANDELS, 3D-HST, COSMOS,...)
- ► CO molecular gas observations at the IRAM Plateau de Bure/NOEMA interferometer
- High-resolution follow-ups

PHIBSS (2010-2013): Tacconi et al. 2010, 2013, Genzel et al. 2010, 2012, 2013, Freundlich et al. 2013 PHIBSS2 (2013-2017): Genzel et al. 2015, Tacconi et al. 2017, Freundlich et al. 2017 in prep.

* Plateau de Bure High-z Blue Sequence Survey

The PHIBSS/PHIBSS2 samples

Sample selection:

- Cover the winding-down, peak and buildup of massive galaxy formation
- Well-understood parent samples (in the GOODS-N, COSMOS, AEGIS fields)
- Homogeneous coverage of the MS and its scatter
- No morphological selection

Scaling relations for $t_{\rm depl} = M_{\rm gas}/SFR$ and $\mu_{\rm gas} = M_{gas}/M_{\rm star}$

Genzel et al. 2015, Tacconi et al. 2017:

$$\begin{split} \log(t_{\text{depl}}) &= A + B \log(1+z) + C \log(\delta MS) + D \log(\delta M) + E \log(\delta R) \\ \log(\mu_{\text{gas}}) &= A + B \left(\log(1+z) - F\right)^{\beta} + C \log(\delta MS) + D \log(\delta M) + E \log(\delta R) \end{split}$$

where

- A, B, C, D, E, (F, β) are assumed not to depend on redshift
- $\delta MS = SSFR/SSFR_{MS}$ with $SSFR_{MS}$ the mean SSFR on the MS (Speagle et al. 2014)
- $\delta M = M_{\rm star}/5.10^{10} M_{\odot}$,
- $\delta R = R_{\rm d}/R_{\rm MS}$ with $R_{\rm MS}$ the mean half-light radius on the MS (Van der Wel et al. 2014)

A compilation of observations beyond the PHIBSS/PHIBSS2 samples:

- 1285 galaxies
- -z = 0 4.4, $\log(M_{\rm star}/M_{\odot}) = 9 11.9$ and $|\log(\delta MS)| \le 2$
- 657 from CO molecular gas
- 512 from dust FIR SED and dust emissivity models
- 123 from dust 1mm emission in the Rayleigh-Jeans domain

Characteristics of the full sample

Comparison with the CANDELS/3D-HST parent sample

- dust 1mm photometry
- dust FIR SED
- o other CO
- CO bursters: SMGs, (U)LIRGs
- CO xCOLDGASS
- CO PHIBSS 1/2

1/ Provisional fit of the depletion time t_{depl} with δMS and δM to project it on the MS line $(\delta MS = 0)$ at a specific stellar mass $(\delta M = 0)$

1/ Provisional fit of the depletion time t_{depl} with δMS and δM to project it on the MS line $(\delta MS = 0)$ at a specific stellar mass $(\delta M = 0)$

2/ Redshift dependence of the projected $\log(t_{depl}) - \langle C \rangle \log(\delta MS) - \langle D \rangle \log(\delta M)$

1/ Provisional fit of the depletion time t_{depl} with δMS and δM to project it on the MS line $(\delta MS = 0)$ at a specific stellar mass $(\delta M = 0)$

2/ Redshift dependence of the projected $\log(t_{depl}) - \langle C \rangle \log(\delta MS) - \langle D \rangle \log(\delta M)$

3/ Fit with δMS and δM of $\log(\delta t_{depl}) = \log(t_{depl}) - A - B\log(1+z)$

1/ Provisional fit of the depletion time t_{depl} with δMS and δM to project it on the MS line $(\delta MS = 0)$ at a specific stellar mass $(\delta M = 0)$

2/ Redshift dependence of the projected $\log(t_{depl}) - \langle C \rangle \log(\delta MS) - \langle D \rangle \log(\delta M)$

3/ Fit with δMS and δM of $\log(\delta t_{depl}) = \log(t_{depl}) - A - B\log(1+z)$

4/ Fit of the residual $\log(t_{depl}) - A - B \log(1 + z) - C \log(\delta MS) - D \log(\delta M)$ with radius through δR

Tacconi et al. (2017)

Jonathan Freundlich

Santa Cruz - 5 August 2017

8 / 15

Interpretation of the δMS trend: compaction and replenishment

Why does $t_{ m depl} \propto (1+z)^{-0.6}$ evolve so slowly?

Toy model:

- ▶ $SFR = \epsilon_{ff} M_{\rm gas} / t_{ff}$ with a constant $\epsilon_{ff} \sim 0.01$, so that $t_{\rm depl} \propto t_{ff}$
- $t_{ff} \propto t_{dyn}$, i.e., clump and galaxy densities and sizes are proportional
- $t_{dyn} = \lambda t_{dyn,halo}$ with a halo spin parameter λ
- $t_{dyn,halo} \propto t_{Hubble}$ by definition, as $\rho_{halo} \equiv 200 \rho_{crit}$
- $t_{Hubble} \propto (1+z)^{-3/2}$ in a matter-dominated Universe

Hence, we would expect $t_{
m depl} \propto (1+z)^{-1.5}$

Possible origins of the discrepancy

- \blacktriangleright Compaction, increasing the star formation efficiency locally and slowing down the increase of $t_{\rm depl}$
- ► $t_{Hubble} \propto (\Omega_{\Lambda} + \Omega_m (1+z)^3)^{1/2} \propto (1+z)^{-1}$ between z = 0 2.5 in a Λ CDM Universe (Genzel et al. 2015)
- Star-forming clumps are not in the Toomre regime
- λ not constant with time...

Comparison with simulations

- ► VELA simulations: cf. talk by Daniel Ceverino
- ▶ NIHAO simulations: lower resolution, stronger density threshold for star formation, stronger feedback, cf. talk by Fangzhou Jiang

t_{depl}

	Tacconi-mock	Tacconi-real	VELA-mock	VELA-real	NIHAO-mock	NIHAO-real	Coeff	cients	in mock:
$A \pm dA$	0.15 ± 0.02	0.21 ± 0.02	0.01 ± 0.06	0.61 ± 0.06	0.15 ± 0.02	0.95 ± 0.02	A	=	0.09
$B \pm dB$	-0.78 ± 0.07	-0.67 ± 0.07	-0.29 ± 0.10	-2.48 ± 0.10	-0.73 ± 0.04	-1.13 ± 0.04	В	=	-0.57
$C \pm dC$	-0.44 ± 0.02	-0.44 ± 0.02	-0.41 ± 0.03	-0.52 ± 0.03	-0.46 ± 0.01	-0.60 ± 0.01	С	=	-0.44
$D \pm dD$	0.09 ± 0.02	0.11 ± 0.02	0.13 ± 0.01	-0.42 ± 0.01	0.06 ± 0.00	-0.08 ± 0.00	D	=	0.07

 μ_{gas}

	m : 1	m 1 1	X / X /	A LEDY A			Coef	ficients	in mock
	Taccont-mock	Taccom-real	VELA-mock	VELA-real	NIHAO-mock	NIHAO-real	COCI	neients	1 26
$A \pm dA$	-1.32 ± 0.02	-1.14 ± 0.02	-1.32 ± 0.06	-0.63 ± 0.06	-1.39 ± 0.02	-0.05 ± 0.02	A	=	-1.30
$B \pm dB$	2.43 ± 0.07	2.54 ± 0.07	2.53 ± 0.10	-0.04 ± 0.10	2.44 ± 0.04	1.33 ± 0.04	В	=	2.6
$C \pm dC$	0.52 ± 0.02	0.52 ± 0.02	0.61 ± 0.03	0.48 ± 0.03	0.55 ± 0.01	0.40 ± 0.01	С	=	0.54
$D \pm dD$	-0.30 ± 0.02	-0.26 ± 0.02	-0.33 ± 0.01	-0.29 ± 0.01	-0.35 ± 0.00	0.05 ± 0.00	D	=	-0.32

VELA simulations

NIHAO simulations

Conclusions

- The PHIBSS and PHIBSS2 surveys provide a census of the molecular gas in a statistically meaningful subsample of the CANDELS/3D-HST sample
- Genzel et al. (2015) and Tacconi et al. (2017): strong constraints on the dependencies of t_{depl} and μ_{gas} with *z*, δMS and δM .
- Do we understand these relations theoretically?
- Simulations do not seem to reproduce the redshift evolution

Molecular gas and morphology > my talk on Monday More about scaling relations > Linda's talk on Friday

Atacama Large Millimeter Array (ALMA), Chile

Jonathan Freundlich

Santa Cruz - 5 August 2017