(No) Correlation between the Spins of Galaxies and Host Halos — Do galaxy sizes care about halo spin at all?

Fangzhou Jiang (Arthur) Hebrew University of Jerusalem

see also Andreas' talk

Avishai Dekel, Omer Kneller, Daniel Ceverino, Joel R. Primack, Andrea Maccio, Aaron Dutton, Rachel Somerville, Shy Genel, Sharon Lapiner, Tomer Nussbaum, Omry Ginzburg

UCSC, Aug.,2017

 $j_{\rm gas} \simeq j_{\rm dm}$

ø background:

- long-standing assumption (Fall & Efstathiou80) in SAMs: $J_{\rm gal} \simeq j_{\rm halo}$
- useful in predicting (disk) galaxy sizes Rg

 $j_{\rm g} \simeq R_{\rm g} V_{\rm rot} \implies R_{\rm g} \simeq \frac{j_{\rm g}}{j_{\rm h}} \frac{j_{\rm h}}{R_{\rm vir} V_{\rm vir}} \frac{V_{\rm vir}}{V_{\rm rot}} R_{\rm vir} \simeq \frac{\lambda_{\rm h} R_{\rm vir}}{V_{\rm rot}}$

- evidence: 1) λ_g and λ_h ($\lambda_x \equiv j_x/\sqrt{2}R_{vir}V_{vir}$ (Bullock+01)) follow similar log-normal distributions (Burkert+16); 2) P(0.5 $\lambda_h R_{vir}|M_{star})$ agrees with observed R_e distribution (Somerville+17)

• test $\lambda_{g} \stackrel{?}{\simeq} \lambda_{h}$ using zoom-in hydro simulations

- VELA: 34 gals, z≥1 (bracketing Milky Way if run to z=0), ART, m_{cell}≈8.3x10⁴M_{sun}(dm), 10³M_{sun}(gas), €_{cell}≈25pc
- NIHAO: 13 Milky-Way-size gals, run to z=0, GASOLINE,
 m_p≈1.7×10⁶M_{sun} (dm), 3.2×10⁵M_{sun} (gas), €≈400pc, much higher density threshold for SF and much stronger fdbk than VELA

$\lambda_{gal} - \lambda_{halo}$ correlation

$\lambda_{gal} - \lambda_{halo}$ correlation

M_{vir} ≈ 10^{11.4}M_{sun}: characteristic mass at which galaxies compactify to form blue nuggets (BN)

regression line: $\log \lambda_{\rm g} = a + (1+b) \log \lambda_{\rm h}$

No correlation b/w \lambda_{gal} and \lambda_{halo} at z \ge 1 in different M_{vir}, z bins
 \lambda_{gal} is higher in higher-M_{vir} (post-compaction) systems

$\lambda_{gal} - \lambda_{halo}$ correlation

 \circ a correlation develops towards lower z (-1<b<0)

$\lambda_{gal} - \lambda_{halo}$ non-correlation

To explain the non-correlation requires mechanisms for initially high- λ_h systems to lose sAM in baryons and low- λ_h system to gain sAM in baryons

possible reasons for a $\lambda_g/\lambda_h - \lambda_h$ anti-correlation

- galaxy compaction (Dekel & Burkert 14)
 - a system starts with low λ_h and thus low λ_{gas}
 - low λ_{gas} -> high Σ_{1kpc} (compaction)
 - "Blue Nugget" (BN) forms -> high central SFR, gas depletion
 - freshly accreted gas with high λ_{gas} forms a ring

compaction happens at a characteristic mass scale Mstar≈10^{9.8}Msun Mvir≈10^{11.4}Msun (which depends on SF, fdbk etc)

Dekel+17 in prep Fangzhou Jiang, Aug, 2017

possible reasons for a $\lambda_g/\lambda_h - \lambda_h$ anti-correlation

ø mergers

halo mergers cause λ_h to rise
(orbital AM dominating λ_h), while
λ_g is untouched yet
halo re-virializes -> λ_h drops,
while λ_g temporarily rises due to
the subsequent galaxy merger

 λ_{g}

halo galaxy time merger merger (see also Lee+17)

- removing post-halo-merger steps gives a weak correlation,
- mergers alone cannot explain the non-correlation between λ_g and λ_h

other possible reasons for smearing out $\lambda_g - \lambda_h$ correlation

see Danovich+15

$\lambda_{gal} and \lambda_{inner halo}$?

 \odot strong correlation between λ_g and $\lambda_{dm}(< r)$ out to 0.2R_{vir}, esp. low-z

consistent with EAGLE (Zavala+16):

tight correlation between the <u>loss of sAM</u> of the inner (0.1Rvir) DM and that of the baryons, by following Lagrangian volumes

Alignment

- good alignment despite non-correlation in values:
 <cosθ> = 0.72 (gas-DM), 0.61 (stars-DM)
- ${\it \circledcirc}$ mechanisms smearing out the λ_g λ_h correlation should NOT randomize the alignment too much
- alignment weakens slightly towards low-z, also seen in Illustris (Zjupa & Springel 2017)

Is λ_h relevant for galaxy size?

VELA and NIHAO gives different answer

$$j_{g} \simeq R_{g} V_{rot} = R_{g} \simeq \frac{j_{g}}{j_{h}} \frac{j_{h}}{R_{vir} V_{vir}} \frac{V_{vir}}{V_{rot}} R_{vir} \sum_{\lambda_{h} R_{vir}} \frac{\lambda_{h} R_{vir}}{V_{rot}}$$
random
$$V_{rot}^{2} = V_{circ}^{2} - \alpha \sigma^{2}$$

λ_{halo} irrelevant, but ...

re ≈ 0.17 rs,NFW

secondary halo parameters may tighten $r_e - r_x$ relation ? halo concentration c_{NFW} ? halo density profile shape α_{Ein} ?

a simple galaxy size indicator

Summary

\odot no $\lambda_g - \lambda_h$ correlation at z>1

- a weak correlation may develop at z<1</p>
- λ_g and $\lambda_{dm(<0.2Rv)}$ still correlated
- $\lambda_g \lambda_h$ alignment always good
- λ_g is higher in post-compaction halos
- The mechanisms that smear out the $\lambda_g \lambda_h$ correlation which must exist at infall need to
 - cause an anti-correlation between λ_q/λ_h and λ_h
 - be less effective at low-z
 - not randomize the orientation

λ_{halo} irrelevant, but compaction matters ...

post-compaction r_e-r_{vir} approaches the local empirical relation (_{Kravtsov13,17})
 which halo characteristic radius r_x gives a universal r_e-r_x relation?
 which halo parameters capture / manifest compaction?

compaction and halo structural parameters

 \circ before compaction: uniform α

- $^{\circ}$ after compaction: α <0.2, post-compaction time scales with α
- \circ just halo response? or maybe c and α can predict compaction?

Ad: SatGen — a poor(wise) man's satellite galaxy population factory

w/o the disk, we can simulate / outperform N-body simulations ...

