

Progress Report: Additional UMKC Efforts to Constrain the Major Merging History with CANDELS Daniel H. McIntosh Kameswara Bharadwaj Mantha Cody Ciaschi, Rubyet Evan, Logan Fries, Luke Landry, Scott Thompson U. Missouri - Kansas City (UMKC)

w/Yicheng Guo (U.Missouri), Joel Primack (UCSC), Greg Snyder (STScI)

CANDELS Team Meeting UC Santa Cruz, CA August 6, 2017

Goals: Distinguishing Compaction Processes & Measuring Rates

i.e., What Role Does Major Merging Really Play in the Development of Massive Galaxies at z > 1?

e.g., Dekel+17 predictions: 50/25/25%

1. Preliminary findings with 2 visclass metrics:

a) visclass "mergers"

1. Preliminary findings with 2 visclass metrics:

a) visclass "mergers"

b) visclass "highly disturbed"

based on team scheme (Kartaltepe+15)

Merger/Interaction Metric

2. DHM re-inspection:

Hallmark Features (solid symbols):

- merger = "clear" tidal distortions
- interacting companion = "clear" dual asym, etc.
- double nuclei = w/in one galaxy in H-band, persists in other 3 bands; i.e., \neq blue clumps

Merger/Interaction Metric

2. DHM re-inspection:

Hallmark Features (solid symbols):

- merger = "clear" tidal distortions
- interacting companion = "clear" dual asym, etc.
- double nuclei = w/in one galaxy in H-band, persists in other 3 bands; i.e., \neq blue clumps

 10^{0} **GDS+UDS** tidal mergers? highly disturbed Number Fraction 10⁻¹ empirical & model data compiled by Hopkins et al.+10 $M_{star} = 1 {-} 3 \, { imes} {10}^{10} \, M_{\odot}$ 10⁻²-0.5 1.5 2.0 1.0 2:5 0.0Redshift 6 to 11 billion years ago McIntosh.02 in prep Visclass Caveats: a) does select 3/4 of hallmark, but high (75-67%) contamination b) only selects half of hallmark, and high (67-50%) contamination

McIntosh - CANDELS Team Meeting - UC Santa Cruz, CA - August 2017

EGS v0.5 Visclass Analysis (z>1.5)

UMKC db team preliminary catalog analysis

~25% of Irr/Pec are also disk-dominated <u>and</u> non-merging/interacting

Rubyet Evan (UG, first-year, 3/4-time research intern)

all Irr/Pec subsets are highly star-forming

Luke Landry (UG, first-year, 3/4-time research intern)

Status of Visual Classifications

1. 2014: UDS and GDS w 3/gx completed

 Sum 2017 <u>finished</u> 3/gx in EGS, COS, GDN final push by 5 UMKC students (M.Weston*, R.Evan, L.Fries, L.Landry, S.Thompson)

Data products

Product	Team	World
WFC3/IR, ACS images	12345	12345
WFC3/UV images	5	15
Photometry, photz, SED fitting, rest-frame photometry	12345	12345
Galfit sersic fits (F160W)	12345	12345
CAS/Gini/M20/MID		
CANDELS Visual classifications		1
GalaxyZoo classifications	123	
Mock catalogs from Semi-analytical models	12345	
Photo-z probability distributions	12345	
Bulge/disk decompositions	12345	
Clump Catalogs	1	
Mock data from hydro simulations		GOODS-I EGS COSMOS

*Maddie Weston (UMKC) sustained effort award! (>10,000 during last year)

Status of Visual Classifications

1. 2014: UDS and GDS w 3/gx completed

 Sum 2017 <u>finished</u> 3/gx in EGS, COS, GDN final push by 5 UMKC students (M.Weston*, R.Evan, L.Fries, L.Landry, S.Thompson)

Data products

Product	Team	World
WFC3/IR, ACS images	12345	12345
WFC3/UV images	5	1 5
Photometry, photz, SED fitting, rest-frame photometry	12345	12345
Galfit sersic fits (F160W)	12345	12345
CAS/Gini/M20/MID	12345	
CANDELS Visual classifications	123	1
GalaxyZoo classifications	123	
Mock catalogs from Semi-analytical models	12345	
Photo-z probability distributions	12345	
Bulge/disk decompositions	12345	
Clump Catalogs	1	
Mock data from hydro simulations		GOODS-
		EGS COSMOS UDS

*Maddie Weston (UMKC) sustained effort award! (>10,000 during last year)

Sep. 2015 Summary:

- Useful info

 (B/D subdivisions,
 flagging peculiar galaxies)
 McIntosh.01,02 in prep
- Interpretative classes are <u>unreliable</u>
- Extra bells'n'whistles <u>not well</u> utilized

Status of Visual Classifications

- 3. raw EGS, COS, GDN visual classifications catalogs (Jeyhan, Fall 2017)
- 4. UMKC db team will produce final metrics catalogs (Fall 2017?)

Data products

Product	Team	World
WFC3/IR, ACS images	12345	12345
WFC3/UV images	5	1 5
Photometry, photz, SED fitting, rest-frame photometry	12345	12345
Galfit sersic fits (F160W)	12345	12345
CAS/Gini/M20/MID	12345	
CANDELS Visual classifications		1
GalaxyZoo classifications	123	
Mock catalogs from Semi-analytical models	12345	
Photo-z probability distributions	12345	
Bulge/disk decompositions	12345	
Clump Catalogs	1	
Mock data from hydro simulations		GOODS-
		EGS COSMOS UDS GOODS-

Sep. 2015 Summary:

- Useful info (B/D subdivisions, flagging peculiar galaxies) McIntosh.01,02 in prep
- Interpretative classes are <u>unreliable</u>
- Extra bells'n'whistles <u>not well</u> utilized

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

Goal: "Mining CANDELS for Tidal Features to Constrain Major Merging During Cosmic Noon"

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts
- distinguish double nuclei from in-situ clumps

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts
- distinguish double nuclei from in-situ clumps
- refit w GALFIT_M to minimize residuals => extract/quantify tidal features (next slide)

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts
- distinguish double nuclei from in-situ clumps
- refit w GALFIT_M to minimize residuals => extract/quantify tidal features (next slide)
- repeat analysis on CANDELized mocks from cosmo zoom-in sims of merging/non-merging assembly

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts
- distinguish double nuclei from in-situ clumps
- refit w GALFIT_M to minimize residuals => extract/quantify tidal features (next slide)
- repeat analysis on CANDELized mocks from cosmo zoom-in sims of merging/non-merging assembly
- calibrate tidal detection & observability timescales; cosmological dimming correction

Cody Ciaschi (MS) + K.Mantha, w/ Yicheng Guo, Greg Snyder & Joel Primack

$$R_{\rm merg,tidal}(z) = \frac{C_{\rm merg,tidal}(z) \times c_{\rm SB}(z) \times f_{\rm tidal}(z)}{T_{\rm obs,tidal}(z)} \left[\rm Gyr^{-1} \right] \,, \tag{1}$$

where $T_{\text{obs,tidal}}$ is the average observability timescale for tidal features, $C_{\text{merg,tidal}} \leq 1$ corrects the estimated fraction of galaxies with tidal features f_{tidal} based on observations for contamination by asymmetric or otherwise disturbed objects *misidentified* as having tidal features, and $c_{\text{SB}} \geq 1$ accounts for incompleteness owing to cosmological surface brightness dimming. Finally, we will apply this new analysis to the existing CANDELS sample to derive $R_{\text{merg,tidal}}(z)$ with realistic and well-constrained error bars.

new HST-AR program to analyze existing data (vdWel+12) for 5900 logM>10, z>1

Goal: "Mining CANDELS for Tidal Features to Constrain Major Merging During Cosmic Noon"

- develop software to automatically detect unique residuals from natural features & poor-fit artifacts
- distinguish double nuclei from in-situ clumps

- refit w GALFIT_M to minimize residuals => extract/quantify tidal features (next slide)
- repeat analysis on CANDELized mocks from cosmo zoom-in sims of merging/non-merging assembly
- calibrate tidal detection & observability timescales; cosmological dimming correction
- compute tidal-based merger rates

Novel Method for Extracting/Quantifying Tidal Features*

Vela simulation post-MMerger, z=3

Mantha.02 in prep

*tidal features at high-z?

¹At z > 1, star-forming galaxies are dynamically 'hotter' than at low-redshift (rotation dominated but with larger velocity dispersion contribution), yet, cosmological zoom-in simulations show that low-SB *broad* tidal tails and fans form in the major merging process.

Novel Method for Extracting/Quantifying Tidal Features*

Vela simulation post-MMerger, z=3

Basic Idea:

Mantha.02 in prep

a) identify tidal features in Sersic residual

b) quantify feature in an annulus

see Mantha's talk Mon. @ Galaxy Workshop

*tidal features at high-z?

¹At z > 1, star-forming galaxies are dynamically 'hotter' than at low-redshift (rotation dominated but with larger velocity dispersion contribution), yet, cosmological zoom-in simulations show that low-SB *broad* tidal tails and fans form in the major merging process.

Cody Ciaschi (MS) + K.Mantha, w/ Yicheng Guo, Greg Snyder & Joel Primack

Additional Uses:

- flag poor fits to clean GALFIT-based structural analyses
- select subsamples for multi-component fitting (e.g., B+D, + nuclear pt. source)
- evolution of spiral features
- evolution of bars
- automate morphology + structure extraction from future big-data surveys (e.g., WFIRST)

<u>Summary</u>

- 1. Team visclass finally done
- 2. New analysis of CANDELS Sersic residuals underway
 - step#1 visual characterization of 5900 (15k) logM>10 (logM>9.5) z>1 galaxies (Fall 2017)

Category	Task	Deliverables	Investigators	Start (duration)
Management	Program administration,	performance reports	McIntosh	10/2017–finish
	supervision of GRA's			
Data Analy-	1) Sérsic residual analy-	catalog; software	GRA#2, Mantha	10/2017 (2 mos.)
sis	sis			
	2) clump analysis	catalogs	Guo	11/2017 (1 mo.)
	3) multi-component	new residual maps;	GRA#2, Guo	11/2017 (3 mos.)
	GALFIT	pipeline software		
	4) tidal feature analysis	source catalog; soft-	Mantha	11/2017 (2 mos.)
		ware		
	5) automatic residual	machine-learning	Mantha, Guo	01/2018 (3 mos.)
	identification	software		
	6a) mock image analysis	source catalog	Mantha, GRA#2,	02/2018 (3 mos.)
			Snyder, Guo	
Scientific	6b) mock image analysis	factors $C_{\text{merg,tidal}}(z)$,	Mantha, GRA#2,	05/2018 (2 mos.)
Analysis		$T_{ m obs,tidal}(z)$	Snyder, Primack	
	7) cosmological dim-	factors $c_{\rm SB}(z)$	Mantha, GRA#2	07/2018 (1 mo.)
	ming			
	8) merger rates; compar-	$R_{ m merg,tidal}(z) + m errors$	Mantha, Snyder,	08/2018 (2 mos.)
	ative analysis		McIntosh	
Publication	Writing	manuscript	all Co-I's	06/2018-
				to to

Table 2: Work Plan Schedule & Deliverables