Flexibility / Time Domain Astronomy

J. Xavier Prochaska (UCO, UC Santa Cruz)

Promoting new ways to utilize the Keck Observatory

Target of Opportunity

- Got to have it now, right now
- Flaring, fading, transient sources
- e.g. GRBs, collisions of all kinds

Target of Opportunity

- Got to have it now, right now
- Flaring, fading, transient sources
- e.g. GRBs, collisions of all kinds

• High Cadence

- Multiple, short exposures over several nights/weeks/months
- e.g. planet hunting, variable stars, AGN

Target of Opportunity

- Got to have it now, right now
- Flaring, fading, transient sources
- e.g. GRBs, collisions of all kinds

• High Cadence

- Multiple, short exposures over several nights/weeks/months
- e.g. planet hunting, variable stars, AGN
- Flexibility
 - Scheduling matters
 - Maximize observing efficiency
 - e.g. Galactic bulge, Solar system

Target of Opportunity

- Got to have it now, right now
- Flaring, fading, transient sources
- e.g. GRBs, collisions of all kinds

• High Cadence

- Multiple, short exposures over several nights/weeks/months
- e.g. planet hunting, variable stars, AGN
- Flexibility
 - Scheduling matters
 - Maximize observing efficiency
 - e.g. Galactic bulge, Solar system

TDAWG Report (2006)

TDA: TrenDs in Astronomy

Law et al. (2009)

TDA:TrenDs in Astronomy

• Present projects

- PTF, PanStaars
- Full Northern sky imaging at high temporal cadence

Law et al. (2009)

TDA: TrenDs in Astronomy

• Present projects

- PTF, PanStaars
- Full Northern sky imaging at high temporal cadence

• Possible future

- LSST, SASIR, Exist
- Full sky in optical and IR
 - Intractable discovery rates

TDA at Keck: Policies

- Ideal: Full queue observing
- Current TDA policy
 - Each institution sets their own rules/guidelines
 - No formal cross-talk between institutions
 - ◆ e.g. TAC
- Possible paths
 - Uber-TAC
 - Keck involvement
 - Observatory-wide policy
 - Encourage multi-institution teams
 - Management of cadence scheduling
- Key issues
 - Data access + rights
 - Competing proposals

TDA at Keck: Technology

TDA at Keck: Technology

Modifications to existing

- Facilitate remote observing from 'anywhere'
- Keep a high percentage of instruments 'hot'
 - Maintain calibrations
 - Equip with favored gratings, filters

TDA at Keck: Technology

Modifications to existing

- Facilitate remote observing from 'anywhere'
- Keep a high percentage of instruments 'hot'
 - Maintain calibrations
 - Equip with favored gratings, filters
- New avenues
 - Keck I deployable tertiary

Keck | Deployable Tertiary

Motivations

- Enable ToO observations with any Keck I instrument
 - e.g. HIRES observations of bright GRBs
- Enable flexible scheduling and high cadence observing
- Eliminate manual tertiary changes

Specifications

- 1) When the tertiary is stowed, it should not block the Cassegrain instruments
- 2) When deployed it should provide the full FOV of each Nasmyth instrument
- 3) The tertiary can rotate
- 4) Deployment/stowing should take less than 15min time

Current 'Team'

Harland Epps (UCO) J. Xavier Prochaska (UCO) Jerry Nelson (UCO) Jerry Cabak (UCO) Hilton Lewis (Keck)

- 5arcmin FOV
- Size
 - 0.88m major axis
 - 0.66m minor axis
- ► Mass ~ 54.5 kg
- 12 rear supports offering minimal deflection

- ► 5arcmin FOV
- Size
 - 0.88m major axis
 - 0.66m minor axis
- ▶ Mass ~ 54.5 kg
- 12 rear supports offering minimal deflection

- 5arcmin FOV
- Size
 - 0.88m major axis
 - 0.66m minor axis
- ▶ Mass ~ 54.5 kg
- 12 rear supports offering minimal deflection
- Support
 - Whiffle tree + lateral support
 - Six strut, kinematic support

- 5arcmin FOV
- Size
 - 0.88m major axis
 - 0.66m minor axis
- ▶ Mass ~ 54.5 kg
- 12 rear supports offering minimal deflection
- Support
 - Whiffle tree + lateral support
 - Six strut, kinematic support
- Deployment mechanism
 - Not fully developed

Keck | DT: Risks

Installation

- Significant engineering above the primary
 - No more complex than the ADC
- What is the interruption to KI observing?
- Reliability
 - More moving pieces than the current tertiary
- Long-term
 - KI limited to instruments with
 5' FOV
 - Do not engineer in a manner that precludes the old tertiary

Keck I DT: Costs and Funding

Keck I DT: Costs and Funding

• Cost

- No meaningful budget yet
 - Material costs, including the mirror, will be small (<100k)
 - Cost is driven by design+engineering
- ▶ ROM: 100k 1M
- Plan
 - Develop a precise budget in <1month</p>

Keck I DT: Costs and Funding

• Cost

- No meaningful budget yet
 - Material costs, including the mirror, will be small (<100k)
 - Cost is driven by design+engineering
- ▶ ROM: 100k 1M
- Plan
 - Develop a precise budget in <1month</p>
- Funding (if SSC approved)
 - JN: "This is such a benefit to KO, it should be done today!"
 - Reality based: External funds
 - ♦ NSF/ATI: Due November 1, 2009
 - Future TSIP?
 - Special PDA program

