Chemical Enrichment in the Globular Cluster ω Centauri

Christian Johnson

Globular Clusters as (not so) Simple Stellar Populations: The New Paradigm

Globular Clusters as Simple Stellar Populations

Stars exhibit small or negligible age spread

Very small (<0.1 dex) metallicity dispersion

✤ Old population; no gas/SF

 Enhanced "alpha" elements and small star-to-star abundance dispersion

Heavy element pattern follows solar-scaled r-process

Rapid enrichment timescale

Sandquist et al. (2010)

Globular Cluster M13

Are Globular Clusters Actually "Simple?"

Are Globular Clusters Actually "Simple?"

Carretta et al. (2009)

 Large star-to-star abundance dispersions for "light" elements
 C-Al (and Si?)

C-N, O-Na, Mg-Al, O-F anti-correlated and Na-Al correlated

>0.1 dex variations in neutron-capture elements

Globular clusters are <u>NOT</u>
 chemically homogeneous

Sodium – Oxygen Anticorrelation

Are Globular Clusters Actually "Simple?"

Carretta et al. (2009)

Sodium – Oxygen Anticorrelation

Globular Clusters: Multiple Populations

Piotto et al. (2007)

~10 globular clusters (so far) known to contain multiple MS, SGB, and/or RGB populations

- Massive clusters
- Almost always <u>discrete</u>
 populations
- Populations may be tied to He content
- Former dwarf galaxies?

Triple Main Sequence: NGC 2808

Omega Centauri: The Extreme Example

Omega Centauri: The Extreme Example

Several discretepopulations

Multiple MS,MSTO, SGB, and RGB

Large abundance spread for <u>all</u> elements

✤ Blue MS <u>more</u> <u>metal-rich</u> than red MS

Blue MS best fitwith Y~0.38

✤ 0-6 Gyr age spread?

Half-light two-bodyrelaxation time: 12 Gyr

Omega Centauri: Observations

♦ >850 RGB stars

- Mag. limited at V=13.5;>90% completeness
- Spans the full cluster metallicity range
- $\mathbf{ } \mathbf{ R}(\lambda/\Delta\lambda) \approx 18,000$
- ♦ S/N > 100
- Only 2 spectroscopic
 binaries

EW and synthesis analysis with MOOG

New observations for this project

ω Cen: Chemical Self-Enrichment

Metallicity Distribution Function

Confirm 4-5 MDFpeaks

RGB-MP (61%)
RGB-Int1 (27%)
RGB-Int2+3 (10%)
RGB-a (2%)

 Spectroscopic estimate agrees with photometric number counts

MDF similar for RGB,SGB, and MS stars

Chemical Abundance Results

ω Cen: A Unique Composition

* ~25-50% of ω Cen stars similar to halo composition

- Remaining stars are O-poor, Na/Al-rich
- Light elements more similar
 to individual globular clusters

Additional processes
 required to explain O, Na, &
 Al

ω Cen
GGCs
Thin/thick Disk
Bulge
▲ Dwarf Galaxies
★ Halo

Contributions from AGB Stars

◆ >3 M_☉ AGB stars + Type
 II SNe reproduce observed
 Na and Al

 ✤ However, no reason to believe only ~3-6 M_☉ AGB stars contributed

♦ Only *low metallicity*,
 >5 M_☉ AGB stars eject
 O-poor material

Creating a large population of O-poor stars requires that only a small AGB mass range polluted ω Cen

Helium Enhancement and In Situ Mixing

D'Antona & Ventura (2007)

In Situ mixing relaxes
narrow AGB mass range

Can strongly deplete O
 with only a modest increase
 in Na and Al

 Can occur if a star is already moderately O-poor, Na/Al-rich, <u>and</u> He-rich

"He-normal" stars have a steeper μ-barrier that may prevent deep(er) mixing

Are the O-poor ω Cen giants He-rich?

O and Na in a He-rich giant

Indirect Evidence for He-rich Giants

No direct
 measurement of He in
 these cool giants

 Many sources that produce high He should process material at > 65x10⁶ K

Leakage from
 MgAl cycle should
 produce some Si

Majority of blue
 main sequence stars
 inside 10 arc min

Blue $MS \rightarrow O$ -poor RGB

Blue Main Sequence	O-poor Giants
Located inside ~7-10'	91% inside 10'
25-35% of MS	27% of RGB
Intermediate [Fe/H]	Intermediate [Fe/H]
$Y \sim 0.38$	Y = 0.38?

Direct He Detection!

Assembling the Pieces...

PHASE I: Formation of the RGB-MP population – similar composition to metal-poor halo/GC

PHASE II: Enrichment of cluster ISM by large population of RGB-MP stars – large increase in s-process

PHASE III: Intermediate metallicity populations form – complex, highly polluted populations; enriched in He, pcapture, and s-process products

Formation of blue main sequence \rightarrow O-poor giants

PHASE IV: Formation of most metal-rich population – unusual composition, very high [Na/Fe], O-Na corr.

PHASE V: Chemical enrichment ceases; minimal TYPE Ia; no stars with [Fe/H] > -0.5 & no strong decrease in [α/Fe]

Summary

Confirmation of a large [Fe/H] spread with multiple peaks in the MDF mirroring the CMD population distributions

★ Stars with [Fe/H] > -1.2 concentrated near the cluster core

 $\left[\alpha/Fe \right]$ ratios suggest minimal Type Ia SN contributions

Light element correlations similar to those found in other globular clusters

* O-poor RGB stars linked to the blue main sequence, He-rich stars

Huge increase in s-process elements in the more metal-rich populations; essentially follows a pure s-process pattern