The fate of S-AGB stars

or

Why won't my code converge?

Work in Progress! No answer yet!

- Herbert Lau
- Pilar Gil Pons
- Carolyn Doherty
- Me

Overview

Massive AGBs fail to converge when Menv about 2 Mo

Numerical problem?

Physical problem?

Looking at the facts: when does it happen?

- The divergence happens for different evolution codes (EVOLV, MONSTAR)
- Can be delayed by increasing alpha (MLR)=>
 increasing mixing efficiency (Herwig et al., Althaus et al,...)

Looking at the facts: when does it happen?

Comparison: the last two TPs

Pg < 0

- Code dies with negative gas pressure
- T and P are dependent variables
 - So values chosen by matrix solution
 - $P_{rad} = 1/3aT^4$ then known
 - $P_{gas} = P Prad is known$
 - Then the e.o.s. tells us ρ
- So a Pg < 0 error means P_{rad} provides all of P
- ie β < 0 and L > L_{Edd}
- See Wood and Faulkner 1986!!

Looking at the facts: contribution P/P_{rad} in the hydrostatic case

$$\beta \rightarrow 0$$

Radiative case:

$$\frac{dP_{rad}}{dP} = \frac{\kappa \rho L_r}{4\pi c G M_r}$$

then:

$$\frac{P_{rad}}{P} = 1 - \beta \approx \frac{L}{L_{Edd}}$$

with:
$$L_{Edd} = \frac{4\pi cGM}{\langle \kappa \rangle}$$

Convective case:

$$\frac{dP_{rad}}{dP} = \frac{\kappa \rho L_r}{4\pi c G M_r} \frac{\nabla}{\nabla_r}$$

then:

$$\frac{P_{rad}}{P} = 1 - \beta \approx \frac{L}{L_{Edd}}$$

with:
$$\dot{L}_{Edd} = \frac{4\pi cGM}{\langle \kappa \rangle} \frac{\nabla_r}{\nabla}$$

Looking at the facts

Conductivity radiation-to-convection

$$\left(\nabla - \nabla_e\right)^{3/2} = \frac{8}{9}U(\nabla_r - \nabla)$$

$$U = \frac{3acT^3}{C_p \rho^2 \kappa \ell_m^2} \sqrt{\frac{8H_p}{g\delta}}$$

U >> convection inefficient
U << convection efficient

After last TP

What pushes $L > L_{Edd}$?

$$\dot{L}_{Edd} = \frac{4\pi cGM}{\langle \kappa \rangle} \frac{\nabla_r}{\nabla}$$

Reduce L_{Edd} by increasing $<\kappa>$???

Hypothesis κ-peak

- Petrovic et al (2006)
 - OPAL opacity tables display a peak due to presence of Fe,
 Ni at T aprox. 250000 K
 - This peak causes huge inflation and departure of hydrostatic equilibrium in WR stars
- Could this be our case?

Testing the κ-peak hypothesis:

We do find the κ-peak

Look at that radius!

Testing the κ-peak hypothesis:

- We smoothed out the peak
- and the code keeps converging!
- The star lost a further 0.5 Msun
- Before it died again!.

But there is another larger opacity peak...

Hypothesis κ-peak

Multiple κ-peaks

- We doubt the star can avoid its fate...
- Deep envelope and low density mean a region of increasing opacity
- The high luminosity drives dramatic expansion
- In our hydrostatic case its supersonic!
 - $10^3 10^4 \, \text{R}_{\odot}$ per year!
- What does a REAL star do?
- We think the energy involved < binding energy of the envelope
- But it might drive periodic, enhanced mass-loss at least?

We need to sort this out!

The general picture

extreme low ρhigh T zone

L>LEdd

Loss of hydrostatic eq En

Energy released after K peak

code converges

Another hydrodynamic problem...