

The scale of a focus is given by S=206265/(D x f#) (arcsec/mm)

Examples:

- 1. 3m @f/5 (prime) 13.8 arcsec/mm (0.33"/24µpixel)
- 2. 1m @f/3 (prime) 68.7 arcsec/mm (1.56"/24 μ pixel)
- 3. 1m @f/17 (cass) 12.1 arcsec/mm (0.29"/24µpixel)
- 4. 10m @f/1.5 (prime) 11.5 arcsec/mm (0.27"/24µpixel)
- 5. 10m @f/15 (cass) 1.15 arcsec/mm (0.03"/24µpixel)
 - Classical cassegrain (parabolic primary + convex hyperbolic in front of prime focus) has significant coma.

$$C = \frac{3\theta}{16f^2} \quad \text{for 3m prime focus, 1'' @ 2.2'}$$

- For a classical cassegrain focus or prime focus with a parabolic primary you need a corrector.
- The Richey-Chretien design has a hyperbolic primary and secondary designed to balance out coma and astigmatism in the focal plane.

Direct Camera design/ considerations

Shutters

- The standard for many years has been multi-leaf iris shutters. As detectors got bigger and bigger, the finite opening time and non-uniform illumination pattern started to cause problems.
- $2k \times 2k 24\mu$ CCD is 2.8 inches along a diagonal.
- Typical iris shutter 50 milliseconds to open.
 Center of a 1s exposure is exposed 10% longer than the corners.

Shutter vignetting pattern produced by dividing a 1 second exposure by a 30 second exposure.

Double-slide system

• The solution for mosaic imagers and largeformat CCD has been to go to a 35mm camera style double-slide system.

Filter Wheel

• Where do you put the filter? There is a trade off between filter size and how well

focussed dust and filter imperfections are.

Drift Scanning

- An interesting option for imaging is to park the telescope (or drive it at a non-sidereal rate) and let the sky drift by.
- Clock out the CCD at the rate the sky goes by and the accumulating charge ``follows'' the star image along the CCD.

Run parallel clocks at sidereal rate

Drift Scanning

- End up with a long strip image of the sky with a `height' = the CCD width and a length set by how long you let the drift run (or by how big your disk storage is).
- The sky goes by at 15 arcseconds/second at the celestial equator and faster than this by a factor of 1/cos(δ) as you move to the poles.
- So, at the equator, PFCam, with 2048 x 0.3" pixels you get an integration time per object of about 40 seconds.

Drift Scanning

- What is the point?
 - Superb flat-fielding (measure objects on many pixels and average out QE variations)
 - Very efficient (don't have CCD readout, telescope setting)
- Problem:
 - Only at the equator do objects move in straight lines, as you move toward the poles, the motion of stars is in an arc centered on the poles.
- Sloan digital survey is a good example
- Zaritsky Great Circle Camera is another

Direct Imaging

• Filter systems

Photometry

- Point sources
 - Aperture
 - PSF fitting
- Extended sources (surface photometry)
- Star-galaxy separation

Filter Systems

- There are a bunch of filter systems
 - Broad-band (~1000Å wide)
 - Narrow-band (~10Å wide)
 - Some were developed to address particular astrophysical problems, some are less sensible.

• Suppose you want to measure the effective temperature of the main-sequence turnoff in a globular cluster.

															÷.					- 6															÷.													
															•					•															c								1	1111	\sim	1	×	
		÷.	_			_							÷.	*	÷.,	÷	÷.,	-			_	_					- ÷.		-		_	-	_		•	. !		· •										
	- 4	<u> </u>		×			•		1/7	\sim	×	6		т.	1	Χ.	J.,	\sim			 ~	_	\mathbf{G}	.	 	N.,		~	\sim	6	ъ.		 		\sim	• •					-	_						
	- 1					•							_			.				_																												
					• •					•	2		÷			•v		N .					•••	1	•		- 21		Ν.	/ 🕊	. F '	Δ:.		- 81	•				- 24	റ	-	-						
		~	· •	/ 1		•			 -	-			~	~	-			\sim		-		-			 	-	1124		\sim		~	Ý	100		~		100		γ						\checkmark		~	
-								_											 		 				 								 															

		Т	5		٦	C.	7							Λ	i	1	2							
		ŀ	≺			X	/							/			Ι							
		I)			V									Γ.	• 4	-							
		Ν											1	1		4	5							
			V	-	-	Г)							
		Т	7		٦	r								1	1		\mathbf{n}							
			К																					
		L)		1									1		• `	U							

	1	ר			L							_	L	• `	\cup						
)										1				7					
)	-	•																	
														7							

Narrow-band Filters

- Almost always interference filters and the bandpass is affected by temperature and beam speed:
 - $\Delta CWL = 1 \text{\AA}/5^{\circ}\text{C}$ $\Delta CWL = 17 \text{\AA}; \text{f}/13 \implies \text{f}/2.8$

Aperture Photometry

- What do you need?
 - Source center
 - Sky value
 - Aperture radius

- Find peaks: use $\partial \rho_x / \partial x$ zeros
- Isolate peaks: use ``symmetry cleaning''
 - 1. Find peak
 - 2. compare pairs of points equidistant from
 - center
 - 3. if $I_{left} \gg I_{right}$, set $I_{left} = I_{right}$
- Finding centers: Intensity-weighted centroid

Sky

- To determine the sky, typically use a local annulus, evaluate the distribution of counts in pixels in a way to reject the bias toward higher-than-background values.
- Remember the 3 Ms.

Some Small Details

- Pixels are square. What about the partial pixels at a given radius? Usual approach is to assume uniform brightness throughout pixel and calculate fraction within *r* of the aperture center.
- What about aperture size?

Same frames as previous example

The wings of a faint star are lost to sky noise at a different radius than the wings of a bright star.

Bright star aperture

Radial profile with neighbors

One approach is to use `growth curves'

- Idea is to use a small aperture (highest S against background and smaller chance of contamination) for everything and determine a correction to larger radii based on several relatively isolates, relatively bright stars in a frame.
- Note! This assumes a linear response so that all point sources have the same fraction of light within a given radius.
- Howell, 1989, PASP, 101, 616

mag for pertures n-	1,n	Gro	owt	h (lur	ves		
	Aperture	2	3	4	5	6	7	8
	Star#1	0.43	0.31	0.17	0.09	0.05	0.02	0.00
	Star#2	0.42	0.33	0.19	0.08	0.21	0.11	0.04
	Star#3	0.43	0.32	0.18	0.10	0.06	0.02	-0.01
	Star#4	0.44	0.33	0.18	0.22	0.14	0.12	0.14
	Star#5	0.42	0.32	0.18	0.09	0.19	0.21	0.19
	Star#6	0.41	0.33	0.19	0.10	0.05	0.30	0.12
	cMean	0.430	0.324	0.184	0.094	0.057	0.02	0.00

DAOGROW

- Stetson, 1990, PASP, 102, 932 presented a fitting function for growth curves.
- Gaussian core + exponential + inverse power law for large radius

Photometry

• In IRAF, imexam is a pretty good start (don't forget to set rimexam parameters)

# COL	LINE	COOF	RDINATES							
# R	Mag	FLUX	SKY	PEAK	E	PA	BETA	ENCLOSED	MOFFAT	DIRECT
1176,84	1063,33	1176,84	1063,33							
8,63	12,26 :	124851.	2299.	9736.	0,19	-87	2,28	2,92	2,87	2,88
1138,60	1151.56	1138,60	1151,56							
8,77	11,60	228293.	2301.	17364.	0,09	70	4.16	2,95	2,99	2,92
1138,60	1151,56	1138,60	1151,56							
8.//	11,60	228293.	2301.	1/364.	0,09	70	4,16	2,95	2,99	2,92
1091,22	1145.51	1091,22	1145.51	0.115				~ ~~	0.07	~ ~~
8,76	12.73	80810.	2303.	6445.	0,12	85	3,98	2,98	2,97	2,92
1115.34	961,56	1115.54 405400	¥ 961.56	0404	~	~~	3 05	0.07	0.00	0.05
გან ქბიი co	12,45	105108.	2307.	8481.	0,11	88	3,65	2,87	2,89	2,85
1033-63	1008,96	1099.69 4 47050	1008,95	05700	~ 77		c 40	0.74	0 47	7 74
21,94	8,45 · 000 07	4.1/6E6 4400 00	2517.	69789*	V+37	89	6,19	6,31	8,47	7.31
1100,09	929,87	1100.05	1 929.8/ 0700	0507	A 47	00	7 40	0.70	0.00	0 77
8,20	13./8	30814.	2302.	2983.	V.17	82	5.18	2₊/6	2.82	Z./3

DAOPHOT, APPHOT

Aperture Photometry

- http://www.aperturephotometry.org
- Astropy
- DS9 has a handy interactive capability

Crowded-field Photometry

- As was assumed for aperture corrections, all point sources have the same PSF (linear detector).
- Various codes have been written that:
 - 1. Automatic star finding
 - 2. Construction of PSF

•

- 3. Fitting of PSF to (multiple) stars
- DAOPHOT, ROMAPHOT, DOPHOT, STARMAN
- Will spend some time on the use of DAOPHOT

DAOPHOT

- Stetson, 1987, PASP, 99, 191
- Stetson, DAOPHOT Users' Manual
- Main subroutines:
 - FIND
 - PHOT
 - PSF
 - ALLSTAR (DAOPHOT II)
- Couple of parameter files:
 - daophot.opt
 - photo.opt

daophot.opt

- HI=65635 (in counts) LO=5(in standard deviations: $sky-5\sigma$)
- GA=3.9 (gain in e-/dn)
- RE=2.05 (readout noise in units of DN)
- (PSF fitting radius) FI=3 PS=12 (PSF radius)
- TH=3.5 (threshold in units of sky standard deviations)
- AN=-6 (analytical form of PSF)
- (watch' level of verbosity for feedback) WA = -2
- VA=2 (spatial variability of PSF)

photo.opt

- A1=3(1st aperture radius=3 pixels)
- (if a zero is encountered, DAOPHOT ignores the rest of the apertures) A2=0
- Etc A9=19
- AA=22AB=25
- AC=29 IS=35
- OS=45

- - (inner sky radius)

- (outer sky radius)

DAOPHOT FIND

- Needs gain, RN, HIBAD, LOBAD, FWHM
- Find convolves the frame with a gaussian with σ = FWHM/2.35. This improves the S/N for objects with a point-source PSF.
- For subrasters, constructs marginal sums and uses derivative zeros to isolate objects
- Fits two 1-D gaussian in x and y
- Calculates ``sharpness'' and ``roundness''
- Writes a .coo file with: n,x,y,mag,sharp,round

- Determine the right threshold with a couple easy tests:
- 1. Plot #stars found vs threshold level
- 2. Use IRAF *fields* and *tvmark* to put dots at the x,y positions in the .coo file
- Output file default name is framename.coo
 - First time through a frame, the strong blends will not be properly parsed into individual centroids.

РНОТ

- Requires photo.opt file in directory to define apertures and sky annulus
- Requires input .coo file
- Calculates sky-subtracted magnitude for each aperture (usually only one)
- Determines the sky value for each object
- Output: framename.ap

PSF

- PSF uses stars on the frame to create a PSF.
 DAOPHOT uses an analytical core plus a 2-D lookup table.
 - For any star: $m=c_0-2.5\log(psf scaling factor)$
- DAOPHOT options are variants on bivariate:

$$\propto \frac{1}{1 + (r^2 / \alpha^2)^{\beta}} \quad \text{Moffet}$$

Fitting radius: ~FWHM; PSF radius: ~4 x FWHM

• To construct a PSF

- 1. Choose unsaturated, relatively isolated stars
- 2. If PSF varies over the frame, sample the full field
- 3. Make 1st iteration of the PSF
- 4. Subtract psf-star neighbors
 5. Make another PSF
- Output of PSF routine is a framename.psf which has a header containing the parameters defining the analytical function and an encoded look up table of residuals.

Allstar (DAOPHOT II)

- Use the .ap file and .psf as input (x,y,sky for every object)
- Based on PSF radius, group objects into sets that need to be simultaneously fitted with PSFs
- Fit PSFs to groups
- Return: framename.als
 - x, y, mag, ∂mag, chi

Scaling factor ratio of actual psf fit to how well it should have fit

DAOPHOT run

- 1. Attach frame
- 2. find (frame.coo)
- 3. phot (frame.ap)
- 4. PSF loop (frame.psf)
- 5. Allstar (frame.als, frames.fits)
- 6. Attach subtracted frame
- 7. Find (frames.coo)
- 8. Phot (frames.ap)
- 9. Merge two lists
- 10. allstar

Star-subtracted frame

Post-DAOPHOT

- You usually want to combine photometry in each filter and match up stars in different filters to determine colors.
- First, need to determine the coordinate transformation between frames. You can do this and combine *photometry* or *images*.
- In IRAF, use a list of a matched stars and *geotrans* and *geomap*.
- There are standalone Stetson programs to combine DAOPHOT-format photometry files

DAOMATCH

- DAOMATCH uses the Method of Matching Triangles. Triangle side length ratios are invariant under rotation, translation, scale change and ``flip''. Groth, 1986, AJ, 91, 1244. (note: #triangles goes like n!/[3!(n-3)!])
- Check bright stars in two files, identify matching triangles, solve for coefficients in:

$$\mathbf{x}_1 = \mathbf{A} + \mathbf{C}\mathbf{x}_2 + \mathbf{D}\mathbf{y}_2$$

$$\mathbf{y}_1 = \mathbf{B} + \mathbf{E}\mathbf{x}_2 + \mathbf{F}\mathbf{y}_2$$

DAOMATCH

- For dithered frames:
 - A,B x,y offsets
 - $-C,F \sim 1$ (scale changes in x and y)
 - D,E ~ 0 (cross-terms are non-zero for rotations)
- Use this with .als files and produce a .mch file with the coordinate transformations. This is usually used as the first guess, to be fed into DAOMASTER

DAOMASTER

• DAOMASTER takes the DAOMATCH .mch files with transformations and a list of .als files and (1) refines the transformations using all matched stars, (2) derives robust photometric offsets between frames and (3) *correctly* averages measurements (remember to never average magnitudes!)

Photometric Calibration

- The photometric standard systems have tended to be zeropointed arbitrarily. Vega is the most widely used and was original defined with V=0 and all colors = 0.
- Hayes & Latham (1975, ApJ, 197, 587) put the Vega scale on an absolute scale.
- The AB scale (Oke, 1974, ApJS, 27, 21) is a physical-unitbased scale with:

 $m(AB) = -2.5\log(f) - 48.60$

where f is monochromatic flux is in units of erg/sec/ cm²/Hz. Objects with constant flux/unit frequency interval have zero color on this scale

Photometric Calibration

 To convert to a *standard* magnitude you need to observe some standard stars and solve for the constants in an equation like:

The *color terms* come about through mismatches between the effective bandpasses of your filter system and those of the standard system. Objects with different spectral shapes have different offsets.

۲

Photometric Standards

- Landolt (1992, AJ, 104, 336)
- Stetson (2000, PASP, 112, 995)
- Fields containing several well measured stars of similar brightness and a big range in color. The blue stars are the hard ones to find and several fields are center on PG sources.
- Measure the fields over at least the the airmass range of your program objects and intersperse standard field observations throughout the night.

Transfer of the Stnd Transformation

- Usually observe standard fields on a night
 - program fields
 - Standards measured with growth-curve aperture photometry to estimate the `total' light
 - Program stars measured via frame-dependent PSF scaling factors
- For each program field you need to find the magnitude difference between the PSF and `total' light -- this is called the *aperture correction*

Aperture correction procedure

- After finding and PSF fitting stars on a frame, subtract the fitted PSFs for all but 20 or 30 relatively isolated objects (after the subtraction, they are hopefully very isolated)
- Do growth-curve photometry on the frame and find:

$$\overline{\Delta} = \sum_{1}^{n} (\max_{PSF} - \max_{aperture})/n$$

- This gets added to all the PSF-based magnitudes on the frame.
- Note: check for position-base trends