

- Bowen, 1962, Astronomical Techniques, pg 34.
- Pogge, 1992, ASP Conf. Ser.#23, pg.160

What are spectra good for?

• Astrophysics!

- Radial velocities
 - Stellar kinematics
 - Discovering extra-solar planets
 - Stellar/neutron star/stellar black hole masses
 - Stellar rotation
 - Rotation curves and velocity dispersion of galaxies to determine mass and mass distribution
 - Measuring the motions of galaxies in clusters
 - Measuring the expansion of the Universe

What are spectra good for?

- Physical properties of gas
 - Temperature, density, chemical composition
- Physical properties of stars
 - Surface temperature
 - Surface pressure (mass/radius)
 - Chemical composition

- Most common is probably the *reflecting diffraction grating*.
- Grating equation: $m\lambda = d[sin(\alpha) + sin(\beta)]$

α

C

order groove spacing

Grating dispersion

- Think of the Young Double-slit experiment with many slits very closely spaced together (100 -10,000+ lines/mm) and for non-monochromatic light - same constructive/destructive interference phenomenon from path-length differences.
- Note: ruling gratings is not easy! Spacing tolerance is ~1nm. Richardson has a machine in a room kept a constant temperature to 0.01°C

Transmission gratings

- There are also different versions of transmission gratings.
 - Transmission grating
 - Grisms add a prism for zero-deviation transmission dispersion
 - Volume Phase Holographic Gratings: VPH use modulations of the index of refraction rather than surface structures to produce dispersion. High efficiency.

Double Spectrometers

- Two-arm
- spectrometers developed to optimize throughput
- Glasses, coatings matched for:
 - 320nm 550nm
 - 550nm 1000nm
- Beam split with dichroic

Spectral Resolution

- $R = \lambda / \Delta \lambda$
- For slit spectral, depends on slit width and grating choice.
- Examples:
 - V filter: 5500Å/1000Å=5.5
 - LRIS-R: 1" ~4 pixels FWHM
 - 150 l/mm grating: *R*~6500/20 ~325
 - 600 l/mm grating: *R*~6500/5 ~1300
 - 1200 l/mm grating: *R*~6500/2.6 ~2600

LRIS (Keck Obs WWW page)

Name Grooves Blaze Wave Dispersion Spectral coverage (l/mm) (Å) (Å/pix) (Å/2048 pix) 150/7500 150 7500 4.8 9830 300/5000 300 5000 2.55 5220 400/8500 400 8500 1.86 3810 600/5000 600 5000 1.28 2620 600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	Grating			
(l/mm)(Å)(Å/pix)(Å/2048 pix)150/750015075004.89830300/500030050002.555220400/850040085001.863810600/500060050001.282620600/750060075001.282620600/10000600100001.282620831/820083182000.931900900/550090055000.8517401200/7500120075000.641310	Name Grooves I	Blaze Wave	Dispersion	Spectral coverage
150/7500 150 7500 4.8 9830 300/5000 300 5000 2.55 5220 400/8500 400 8500 1.86 3810 600/5000 600 5000 1.28 2620 600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	(l/mm)	(Å)	(Å/pix)	(Å/2048 pix)
300/5000 300 5000 2.55 5220 400/8500 400 8500 1.86 3810 600/5000 600 5000 1.28 2620 600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	150/7500 150	7500	4.8	9830
400/8500 400 8500 1.86 3810 600/5000 600 5000 1.28 2620 600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	300/5000 300	5000	2.55	5220
600/5000 600 5000 1.28 2620 600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	400/8500 400	8500	1.86	3810
600/7500 600 7500 1.28 2620 600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	600/5000 600	5000	1.28	2620
600/10000 600 10000 1.28 2620 831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	600/7500 600	7500	1.28	2620
831/8200 831 8200 0.93 1900 900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	600/10000 600	10000	1.28	2620
900/5500 900 5500 0.85 1740 1200/7500 1200 7500 0.64 1310	831/8200 831	8200	0.93	1900
1200/7500 1200 7500 0.64 1310	900/5500 900	5500	0.85	1740
	1200/7500 1200	7500	0.64	1310

- For higher orders with λ<310nm it's not an issue as the atmosphere cuts out all the light (can still be an issue for calibration)
 - sources).
- But, if you are working in the red (>640nm) in 1st order, you need to block the 2nd order light.
- If you are working in a higher order, may need to block red light from lower orders.

KPNO 2.1m Goldcam blue blocking filters

- Grating tilt for wavelength
- Grating efficiency
- Dichroics and double spectrometers

Note about Observing

- If spectrometer is not flexure compensated, the usual procedure is to obtain a line lamp spectrum (or two) and flat-field spectrum (or two) at the position of your program object. Sometimes even bracket the program exposures with arcs and flats.
- Depending on program, observe:
 - Flux standard
 - Radial velocity standard
 - Hot rapid rotator to identify terrestrial atmospheric absorption
- If no ADC, pay attention to position angle!

Parallactic Angle

 The "parallactic" angle is perpendicular to the horizon and allows you to capture all the light in an atmospheric-dispersed object (but increasingly displaced along the slit with increasing airmass)

Spectral Reduction Procedures

- There are good introductions/cookbooks available from the IRAF folks. The introduction to spectral reductions is at the class WWW site.
- There are many ways to accomplish most tasks. Will run through a basic approach to reducing long slit spectra.

• Steps:

- Bias and overscan correction
- Flat-fielding
 - Note: need to remove large-scale variations in the spectral dimension
- Identify location of the spectrum
- Identify location of sky samples
- Extract spectrum
 - Trace
 - Collapse lines
 - Interpolate sky and subtract
- Use stellar aperture to extract arc spectrum
 - Note: sometimes do the flat-fielding here
- Fit pixel-wavelength map and apply to spectrum
- Derive flux calibration and apply to spectrum

input =	List of input images
(output =) List of output spectra Multispec: star, sky, S/N
(apertur=) Apertures
(format =	multispec) Extracted spectra format
(referen=	List of aperture reference images Useful for arcs/faint spectra/
(profile=) List of aperture profile images discontinuous spectra
(interac=	ves) Run task interactively?
(find =	ves) Find apertures?
(recente=	ves) Recenter apertures?
(resize =	ves) Resize apertures? Vsually no
(edit =	ves) Edit apertures?
(trace =	ves) Trace apertures?
(fittrac=	ves) Fit the traced points interactively?
(extract=	ves) Extract spectra?
(extras =	ves) Extract sky, sigma, etc.? keep spectrum sky and S/N in
(review =	ves) Review extractions? 2 d output fite file
	S-u output nts me

APERTURE CENTERING PARAMETERS
AUTOMATIC FINDING AND ORDERING PARAMETERS
RECENTERING PARAMETERS
RESIZING PARAMETERS
TRACING PARAMETERS

Skipping the details

of these for now

(skybox =1) Box car smoothing length for sky(weights=none) Extraction weights (nonelvariance)(pfit =fit1d) Profile fitting type (fit1dlfit2d)(clean =yes) Detect and replace bad pixels?(saturat=31000.) Saturation level(readnoi=0.) Read out noise sigma (photons)(gain =1.) Photon gain (photons/data number)(lsigma =4.) Lower rejection threshold(usigma =4.) Upper rejection threshold(nsubaps=1) Number of subapertures per aperture	(backgro=	fit) Background to subtract (none,average,median,min,fit)
(weights=none) Extraction weights (nonelvariance)(pfit =fit1d) Profile fitting type (fit1dlfit2d)(clean =yes) Detect and replace bad pixels?(saturat=31000.) Saturation level(readnoi=0.) Read out noise sigma (photons)(gain =1.) Photon gain (photons/data number)(lsigma =4.) Lower rejection threshold(usigma =1.) Number of subapertures per aperture	(skybox =	1) Box car smoothing length for sky
<pre>(pfit = fit1d) Profile fitting type (fit1dlfit2d) (clean = yes) Detect and replace bad pixels? (saturat= 31000.) Saturation level (readnoi= 0.) Read out noise sigma (photons) (gain = 1.) Photon gain (photons/data number) (lsigma = 4.) Lower rejection threshold (usigma = 4.) Upper rejection threshold (nsubaps= 1) Number of subapertures per aperture</pre>	(weights=	none) Extraction weights (nonelvariance)
(clean =yes) Detect and replace bad pixels?(saturat=31000.) Saturation level(readnoi=0.) Read out noise sigma (photons)(gain =1.) Photon gain (photons/data number)(lsigma =4.) Lower rejection threshold(usigma =4.) Upper rejection threshold(nsubaps=1) Number of subapertures per aperture	(pfit =	fit1d) Profile fitting type (fit1dlfit2d)
(saturat=31000.) Saturation level(readnoi=0.) Read out noise sigma (photons)(gain =1.) Photon gain (photons/data number)(lsigma =4.) Lower rejection threshold(usigma =4.) Upper rejection threshold(nsubaps=1) Number of subapertures per aperture	(clean =	yes) Detect and replace bad pixels?
<pre>(readnoi= 0.) Read out noise sigma (photons) (gain = 1.) Photon gain (photons/data number) (lsigma = 4.) Lower rejection threshold (usigma = 4.) Upper rejection threshold (nsubaps= 1) Number of subapertures per aperture</pre>	(saturat=	31000.) Saturation level
(gain = 1.) Photon gain (photons/data number) (lsigma = 4.) Lower rejection threshold (usigma = 4.) Upper rejection threshold (nsubaps= 1) Number of subapertures per aperture	(readnoi=	0.) Read out noise sigma (photons)
(lsigma = 4.) Lower rejection threshold (usigma = 4.) Upper rejection threshold (nsubaps= 1) Number of subapertures per aperture	(gain =	1.) Photon gain (photons/data number)
(usigma = 4.) Upper rejection threshold (nsubaps= 1) Number of subapertures per aperture	(lsigma =	4.) Lower rejection threshold
(nsubaps= 1) Number of subapertures per aperture	(usigma =	4.) Upper rejection threshold
	(nsubaps=	1) Number of subapertures per aperture

Example Extraction

Flat-fields

- Can flat-field original frames in 2-D format, but more commonly, the flat-field image is extracted with the same aperture as the program object.
- In the spirit of flat-fielding for direct images, you would like a source that is uniform in the spatial direction AND has a flat spectrum. In practice, all flat-field lamps (usually a hot quartz lamp) have a strong spectral (continuum) signature.
- So, usually extract flat, then fit a function in the spectral direction and divide this out to leave the pixel-to-pixel response.

Wavelength Calibration

- Identify the lines in your lamp-line spectrum
- Fit line centers, derive function to map pixel scale to wavelength scale
- Associate arc+solution with program spectra
- Apply the `dispersion' solution, usually writing a short version of the solution to the header

• IRAF wavelength fitting routine:

- noao.oned.identify

PACKAGE = onedspec

TASK = identify

images =	Images containing features to be identified
(section=	middle line) Section to apply to two dimensional images
(databas=	database) Database in which to record feature data
(coordli= linelis	ts\$idhenear.dat) User coordinate list (typically user uses their own list)
(units =) Coordinate units
(nsum =	10) Number of lines/columns/bands to sum in 2D image
(match =	-3.) Coordinate list matching limit
(maxfeat=	50) Maximum number of features for automatic identif
(zwidth =	100.) Zoom graph width in user units
(ftype =	emission) Feature type
(fwidth =	4.) Feature width in pixels
(cradius=	5.) Centering radius in pixels
(thresho=	0.) Feature threshold for centering
(minsep =	2.) Minimum pixel separation
(functio=	spline3) Coordinate function
(order =	1) Order of coordinate function
(sample =	*) Coordinate sample regions
× 1	

:label both

Applying wavelength solution

PACKAGE = onedspec

TASK = refspectra

input =	extracted_spectrum List of input spectra	
(referen=	arc) List of reference spectra	
(apertur=) Input aperture selection list	
(refaps =) Reference aperture selection list	
(ignorea=	=yes) Ignore input and reference apertures?	
(select =	interp) Selection method for reference spectra	γ
(sort =	jd) Sort key	Sophisticated auto
(group =	ljd) Group key	
(time =	no) Is sort key a time?	assignment options
(timewra	= 17.) Time wrap point for time sorting)
(overrid=	no) Override previous assignments?	
(confirm=	yes) Confirm reference spectrum assignment	s?
(assign =	yes) Assign the reference spectra to the input	spectr
(logfile=	STDOUT, logfile) List of logfiles	
(verbose=	no) Verbose log output?	
answer =	= Accept assignment?	
(mode =	=ql)	

PACKAGE =	= onedspec	
TASK = dis	spcor	
input =	List of input spectra	
output =	List of output spectra	
(lineari=	yes) Linearize (interpolate) spectra?	
(databas=	database) Dispersion solution database	
(table =) Wavelength table for apertures	
(w1=	INDEF) Starting wavelength	
(w2 =	INDEF) Ending wavelength	
(dw =	INDEF) Wavelength interval per pixel	
(nw =	INDEF) Number of output pixels	
(log =	no) Logarithmic wavelength scale?	
(flux =	yes) Conserve flux?	
(samedis=	no) Same dispersion in all apertures?	
(global =	no) Apply global defaults?	
(ignorea=	no) Ignore apertures?	
(confirm=	no) Confirm dispersion coordinates?	
(listonl=	no) List the dispersion coordinates only?	
(verbose=	yes) Print linear dispersion assignments?	
dispcor b	188.ms w188.ms	
$28 \text{ me} \cdot \mathbf{PE}$	EESDEC1 - Jaroma 1 J	

- Use *fitcoords* to take the fit as a function of line number plus *transform* to remap the 2D image to be rectilinear in dispersion-spatial.
- Useful for long-slit work with resolved objects.

Flux Calibration

There are lists of spectrophotometric standard stars:

- > Oke, J. B. 1990, AJ, 99, 1621
- Stone, R. P. S. 1996, ApJS, 107, 423
- Massey, P., & Gronwall, C. 1990, ApJ, 358, 344
- ➢ IRAF: onedstds\$

Usual zeropoint is based on Vega:

 $F_{5556\text{\AA}}$ =3.52 x 10⁻²⁰ erg/cm²/s/Hz (V=0.048 mag)

Note: In IRAF, you can specify the broadband magnitude of each star to do a rough zeropoint correction for slit losses.

noao.oned

standard: identifies standard stars by name, associates an extinction curve, gets airmass exposure time. Output is a file (default name std)

sensfunc: given extinction function, tabulated standard system flux and your observed spectrum calculate a sensitivity function.

calibrate: applies the sensitivity function to spectra

