IRAF tricks

- DS9/ximtool save as option -- .eps file for inclusion into latex document.
- Note sample .tex document at class www site
- In IRAF graphics window: :.snap eps will output a postscript file of whatever you have displayed
- hselect > filename will output hselect result to a text file

Surface Photometry

> Simple approach of aperture photometry works OK for some purposes. For aperture radius r
> mag $=c_{0}-2.5 \log \left(\right.$ total $\left.\mathrm{cnts}_{\text {aper }}-\pi^{2} \mathrm{sky}\right)$

Typically working with much larger apertures for galaxies

- prone to contamination
- sky determination even more critical
- often want to know more than total brightness

- There is a long history of surface photometry with CCDs:
- GASP Davis et al., AJ, 90, 1985
- Jedrzejewski, MNRAS, 226, 747, 1987 (Ellipse:STSci)
- Ciambur B. C., 2015, ApJ, 810, 120 (update of Ellipse)
- Erwin P., 2015, ApJ, 799, 226 (IMFIT)
- GIM2D (Simard, 2002 ApJS 142, 1)
- Circular aperture photometry makes less sense as there are many different intrinsic shapes
- Most work is done with galaxy profile modeling
- Could fit (or find) isophotes, and the most common procedure is to fit elliptical isophotes.
- Parameters are: $\mathrm{x}_{\text {center }}, \mathrm{y}_{\text {center }}$, ellipticity (ε), R (semi-major axis) and position angle.

Start with guesses for $\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}$, R, ε and p.a., then compare the ellipse with real data all along the ellipse (all θ values)

fitted isophote

Fit the $\Delta \mathrm{I}-\theta$ plot and iterate on $\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}$, p.a., and ε to minimize the coefficients in an expression like:

$$
\mathrm{I}(\theta)=\mathrm{I}_{0}+\mathrm{A}_{1} \sin (\theta)+\mathrm{B}_{1} \cos (\theta)+\mathrm{A}_{2} \sin (2 \theta)+\mathrm{B}_{2} \cos (2 \theta)
$$

Changes to x_{c} and y_{c} mostly affect $\mathrm{A}_{1}, \mathrm{~B}_{1}$,

- More specifically:
$\Delta($ major axis center $)=\frac{-\mathrm{B}_{1}}{\mathrm{I}^{\prime}}$
$\Delta($ minor axis center $)=\frac{-\mathrm{A}_{1}(1-\varepsilon)}{\mathrm{I}^{\prime}}$

$$
\begin{aligned}
\Delta(\varepsilon) & =\frac{-2 \mathrm{~B}_{2}(1-\varepsilon)}{\mathrm{a}_{0} \mathrm{I}^{\prime}} \\
\Delta(\mathrm{p} \cdot \mathrm{a}) & =\frac{2 A_{2}(1-\varepsilon)}{\mathrm{a}_{0} I^{\prime}\left[(1-\varepsilon)^{2}-1\right]}
\end{aligned}
$$

where:

$$
\begin{aligned}
I^{\prime}=\left.\frac{\partial I}{\partial R}\right|_{a_{0}} \longleftarrow & \text { Position along the } \\
& \text { semi-major axis }
\end{aligned}
$$

- After finding the best-fitting elliptical isophotes, the residuals are often interesting. Fit:

$$
\mathrm{I}=\mathrm{I}_{0}+\mathrm{A}_{\mathrm{n}} \sin (\mathrm{n} \theta)+\mathrm{B}_{\mathrm{n}} \cos (\mathrm{n} \theta)
$$

already minimized $n=1$ and $n=2, n=3$ is usually not significant, but:
B_{4} is negative for "Boxy'" isophotes
B_{4} positive for "disky"' isophotes

Surface Photometry Tools

- How do you carry out surface photometry measurements?
- For the class will use a Jedrxxxx-based set of algorithms available via IRAF in the STScI STSDAS set of packages.
- stsdas.analysis.isophote

Stsdas isophote tasks

Controlpar

```
PACKAGE = isophote
    TASK = controlpar
(conver = 0.05) convergency criterion (maximum harmonic amplitud
(minit = 10) minimun no. of iterations at each sma
(maxit =
(hcenter=
(hellip =
(hpa =
(wander =
(maxgerr=
(olthres=
(soft =
    1.) object locator's k-sigma threshold
(mode =
    no) soft stop?
    50) maximun no. of iterations at each sma
    no) hold center fixed ?
    no) hold ellipticity fixed ?
    no) hold position angle fixed ?
    INDEF) maximum wander in successive isophote centers
    0.5) maximum acceptable gradient relative error
\square al)
```


Geompar

PACKAGE = isophote
TASK = geompar

(x0	INDEF) initial isophote center X Often it is a good
(y0	INDEF) initial isophote center Y idea to put in
(ellip0 =	0.2) initial ellipticity starting values
(pa0	20.) initial position angle (degrees)
(sma0	10.) initial semi-major axis lenght
$($ minsma $=$	0.) minimum semi-major axis lenght
$($ maxsma $=$	INDEF) maximum semi-major axis lenght
(step $=$	0.1) sma step between successive ellipses
(linear =	no) linear sma step?
(maxrit =	INDEF) maximum sma lenght for iterative mode
(recente=	yes) allows finding routine to re-center $\mathrm{x} 0-\mathrm{y} 0$?
(xylearn=	yes) updates pset with new $\mathrm{x} 0-\mathrm{y} 0$?
(physica=	yes) physical coordinate system ?

Samplepar

```
PACKAGE = isophote
    TASK = samplepar
(integrm= bi-linear) area integration mode
(usclip = 3.) sigma-clip criterion for upper deviant points
(lsclip =
(nclip =
(fflag =
(sdevice=
(tsample=
(absangl=
(harmoni=
(mode =
    3.) sigma-clip criterion for lower deviant points }Important!
    0) number of sigma-clip iterations
    0.5) acceptable fraction of flagged data points
    none) graphics device for ploting intensity samples
    none) tables with intensity samples
    yes) sample angles refer to image coord. system ?
    none) optional harmonic numbers to fit
    al)
```


ellipse

- Use the σ-clipping option
- Very common to pre-clean frames:
- Subtract point sources with DAOPHOT
- Mask saturated stars and CCD flaws
- Mask other galaxies
- Sometimes it is useful to input starting values

Calculate mean and RMS pixel intensity for annulus, toss any values above mean + nRMS

- Ellipse produces a Table (in STSDAS table format, ttools.tprint allows you to view this) with the parameters of the best fitting ellipses along the semi-major axis.
- Plotting $\mathrm{I}_{\text {ellipse }}$ vs r gives the surface brightness profile

Photometry is the usual:

$$
\mathrm{m}=\mathrm{c}_{0}-2.5 \log \left(\sum(\text { pixels in } \mathrm{r}+\Delta \mathrm{r})-(\mathrm{npix} \cdot \mathrm{sky})\right.
$$


```
input image name (test3):
output table name (test3.tab):
Running object locator... Done.
#
# Semi- Isophote Ellipticity Position Grad. Data Flag Iter.Stop
# major mean Angle rel. code
# axis intensity error
#(pixel) (degree)
#
40.00 4219.62(527.26) 0.123(0.002)-70.00(0.54) 0.125 234 0
44.00 3773.10(481.03) 0.123(0.002)-70.00(0.59) 0.122 258 0
48.40 3384.59(426.91) 0.123(0.002)-70.00(0.52) 0.116 284 0
53.24 3038.81(384.52) 0.123(0.002)-70.00(0.47) 0.110 312 0
58.56 2725.05(344.36) 0.123(0.002)-70.00(0.56)0.097 343 0. 50 2
64.42 2431.91(297.83) 0.123(0.002)-70.00(0.38) 0.091 378 0
634.52 556.57( 7.44) 0.273(0.009)-18.68(1.03) 0.101 2602760 17 1
36.36 4728.37(566.24) 0.123(0.003)-70.00(0.70)0.125 213 0
33.06 5287.32(620.80) 0.123(0.005)-70.00(1.36) 0.129 193 00 50 2
```



```
0.66 53679.33(7585.3) 0.269(INDEF) -45.76(INDEF)}1.853 13 13 0 % 1. 4-
```



```
0.55 56150.06(6355.0) 0.269(INDEF) -45.76(INDEF) 2.616 13 0
```


bmodel

- After you have run ellipse and produced a table. The task called bmodel will build a smooth image of the family of ellipses. Subtracting this from the original frame will tell you how good the fit is and will reveal non-axially symetric structures.

Saturated core

Hidden disk

Bad job of clipping
Non elliptical structures

GALFIT, GIM2D

Small galaxies and classification

- Originally (starting with Kron in 1979) simple star-galaxy separation was the goal.
- These days packages do a lot more:
- Deblending
- Filtering
- Photometry shape decomposition
- FOCAS Jarvis \& Tyson, 1981, AJ 86, 476
- PPP Yee, 1991, PASP, 103396
- Sextractor Bertin \& Arnouts, 1996, A\&A Sup. Ser. 117,393

Star-Galaxy separation

- Galaxies are resolved, stars are not
- All methods use various approaches to comparing the amount of light at large and small radii.

- $\mathrm{m}_{\text {small } \mathrm{r}} / \mathrm{m}_{\text {large } \mathrm{r}}$
- Total mag/peak count
- Mag/average surface brightness
- DAOPHOT CHI (PSF fit/predicted PSF fit)
- petroR50/petroR90 (SDSS)
- Often talk about moment analysis.

$$
\frac{\sum_{1}^{1} x_{i}^{i}}{\sum_{i}^{i_{i}}}
$$

Same thing in $\mathrm{y} . \mathrm{n}=1$ is centroid, $\mathrm{n}=2$ is variance etc.

Note; ratio of second moments useful for ellipticity measurements

Sextractor

- Most commonly used package these days is SExtractor (although for pure star-galaxy separation it is hard to beat using the difference of two apertures).
- Bertin \& Arnouts, 1996, A\&AS, 117, 393
- User's Manual
- Sextractor for Dummies v4
- Not for good surface photometry, but good for classification and rough photometric and structural parameter derivation for large fields.

1. Background map (sky determination)
2. Identification of objects (thresholding)
3. Deblending
4. Photometry
5. Shape analysis

Thresholding is an alternative to peak finding. Look for contiguous pixels above a threshold value.

- User sets area, threshold value.
- Sometimes combine with a smoothing filter Deblending based on multiple-pass thresholding

Sextractor Star/Galaxy Separation

- Lots of talk about neural-net algorithms, but in the end it is a moment analysis.
- 'stellarity"'. Typically test it with artificial stars and find it is very good to some limiting magnitude.

$\mathrm{s}-\mathrm{g}$ going bad at $\mathrm{R} \sim 22$

Shapes

Convolved image analysis

