IRAF tricks

- DS9/ximtool save as option -- .eps file for inclusion into latex document.
 - Note sample .tex document at class www site
- In IRAF graphics window: :.snap eps will output a postscript file of whatever you have displayed
- hselect > filename will output hselect result to a text file

Surface Photometry

Simple approach of aperture photometry works OK for some purposes. For aperture radius r

mag= $c_0 - 2.5\log(\text{total cnts}_{aper} - \pi r^2 \text{sky})$

Typically working with much larger apertures for galaxies

- prone to contamination
- sky determination even more critical
 often want to know more than total
 brightness

- There is a long history of surface photometry with CCDs:
 - GASP Davis et al., AJ, 90, 1985
 - Jedrzejewski, MNRAS, 226, 747, 1987 (Ellipse:STSci)
 - Ciambur B. C., 2015, ApJ, 810, 120 (update of Ellipse)
 - Erwin P., 2015, ApJ, 799, 226 (IMFIT)
 - GIM2D (Simard, 2002 ApJS 142, 1)
- Circular aperture photometry makes less sense as there are many different intrinsic shapes
- Most work is done with galaxy profile modeling

- Could fit (or find) *isophotes*, and the most common procedure is to fit elliptical isophotes.
- Parameters are: x_{center}, y_{center}, ellipticity (ε),
 R (semi-major axis) and position angle.

• More specifically:

$$\Delta(\text{major axis center}) = \frac{-B_1}{\Gamma}$$

$$\Delta(\text{minor axis center}) = \frac{-A_1(1-\varepsilon)}{\Gamma}$$

$$\Delta(\varepsilon) = \frac{-2B_2(1-\varepsilon)}{a_0\Gamma'}$$

$$\Delta(\varepsilon) = \frac{2A_2(1-\varepsilon)}{a_0\Gamma'(1-\varepsilon)^2-1]}$$
where :

$$\Gamma' = \frac{\partial I}{\partial R} \Big|_{a_0} - Position along the semi-major axis}$$

 After finding the best-fitting elliptical isophotes, the residuals are often interesting. Fit:

 $I = I_0 + A_n sin(n\theta) + B_n cos(n\theta)$ already minimized n=1 and n=2, n=3 is usually not significant, but: $B_4 is negative for ``Boxy'' isophotes$ $B_4 positive for ``disky'' isophotes$

Surface Photometry Tools

- How do you carry out surface photometry measurements?
- For the class will use a Jedrxxxx-based set of algorithms available via IRAF in the STScI STSDAS set of packages.
- stsdas.analysis.isophote

Stsdas isophote tasks	
bmodel geompar@ isomap magpar@	
controlpar@ isoexam isopall samplepar@	
ellipse isoplot	
Parameter files	

Controlpar

PA	CI	\mathbf{X}_{I}	4(ЗE	=	i	SC	p	h	ote	-
Т	A	SI	ζ:	= C	:0	nt	rc)	pa	r	

(conver =	0.05) convergency criterion (maximum harmonic amplitud
(minit =	10) minimun no. of iterations at each sma
(maxit =	50) maximun no. of iterations at each sma
(hcenter=	no) hold center fixed ?
(hellip =	no) hold ellipticity fixed ?
(hpa =	no) hold position angle fixed ?
(wander =	INDEF) maximum wander in successive isophote centers
(maxgerr=	0.5) maximum acceptable gradient relative error
(olthres=	1.) object locator's k-sigma threshold
(soft =	no) soft stop ?
(mode =	al)

Geompar

PACKAGE = isophote TASK = geompar

INDEF) initial isophote center X Often it is a good	
INDEF) initial isophote center Y idea to put in	
0.2) initial ellipticity	
20.) initial position angle (degrees)	
10.) initial semi-major axis lenght	_
0.) minimum semi-major axis lenght	
INDEF) maximum semi-major axis lenght	
0.1) sma step between successive ellipses	
no) linear sma step ?	_
INDEF) maximum sma lenght for iterative mode	
yes) allows finding routine to re-center x0-y0?	
yes) updates pset with new x0-y0?	
yes) physical coordinate system ?	
	INDEF) initial isophote center XOften it is a goodINDEF) initial isophote center Yidea to put in0.2) initial ellipticitystarting values20.) initial position angle (degrees)starting values10.) initial semi-major axis lenght0.) minimum semi-major axis lenght1NDEF) maximum semi-major axis lenght0.1) sma step between successive ellipsesno) linear sma step ?INDEF) maximum sma lenght for iterative modeyes) allows finding routine to re-center x0-y0 ?yes) updates pset with new x0-y0 ?yes) physical coordinate system ?

Samplepar

PACKAGE = isophote TASK = samplepar

(integrm=	bi-linear) area integration mode
(usclip =	3.) sigma-clip criterion for upper deviant points
(lsclip =	3.) sigma-clip criterion for lower deviant points
(nclip =	0) number of sigma-clip iterations
(fflag =	0.5) acceptable fraction of flagged data points
(sdevice=	none) graphics device for ploting intensity samples
(tsample=	none) tables with intensity samples
(absangl=	yes) sample angles refer to image coord. system ?
(harmoni=	none) optional harmonic numbers to fit
(mode =	al)

ellipse

• Use the σ -clipping option

- Very common to pre-clean frames:
 - Subtract point sources with DAOPHOT
 - Mask saturated stars and CCD flaws
 - Mask other galaxies
- Sometimes it is useful to input starting values

Calculate mean and RMS pixel intensity for annulus, toss any values above $\underline{\text{mean} + n\text{RMS}}$

- Ellipse produces a Table (in STSDAS table format, ttools.tprint allows you to view this) with the parameters of the best fitting ellipses along the semi-major axis.
- Plotting I_{ellipse} vs r gives the surface brightness profile

Photometry is the usual:

 $m=c_0 - 2.5\log(\Sigma(\text{pixels in } r+\Delta r) - (\text{npix} \cdot \text{sky}))$

output table name	e (test3 tab):							
Dupping chiest 1	o (insis.iau).							
	ocator Done.							
#								
# Semi- Isophote	Ellipticity Position Gr	ad. Data Flag Iter	. Stop					
# major mean	Angle rel.	code						
# axis intensity	error							
#(pixel)	(degree)							
#	26) 0 122/0 002) 70 00/ 0	54) 0 125 224 0	50	`				
40.00 4219.02(327	(20) 0.123(0.002) - 70.00(0.002) 0.123(0.002) - 70.00(0.002) 0.123(0.002) - 70.00(0.002) - 70.	50001222540	50	2				
44.00 3773.10(481	(0.002) - 70.00(0.0	52) 0.122 238 0 52) 0.116 284 0	50	2				
53.24 3038.81(384	.52) 0.123(0.002) -70.00(0.	47) 0.110 312 0	50	2				
58.56 2725.05(344	.36) 0.123(0.002) -70.00(0.	56) 0.097 343 0	50	2				
64.42 2431.91(297	.83) 0.123(0.002) -70.00(0.	38) 0.091 378 0	50	2				
634.52 556.57(7.4	4) 0.273(0.009) -18.68(1.0.	3) 0.101 2602 760	17	1				
36.36 4728.37(566	.24) 0.123(0.003) -70.00(0.	70) 0.125 213 0	50	2				
33.06 5287.32(620	.80) 0.123(0.005) -70.00(1.	36) 0.129 193 0	50	2				
0.73 51976.14(848	2.2) 0.269(INDEF) -45.76(I	NDEF) 1.460 13	0	1 4				
0.66 53679.33(758	5.3) 0.269(INDEF) -45.76(I	NDEF) 1.853 13	0	1 4				
0.60 55147.36(700	6.2) 0.269(INDEF) -45.76(I	NDEF) 1.951 13	0	1 4				
0.55 56150.06(635	5.0) 0.269(INDEF) -45.76(I	NDEF) 2.616 13	0	1 4				

bmodel

 After you have run ellipse and produced a table. The task called *bmodel* will build a smooth image of the family of ellipses.
 Subtracting this from the original frame will tell you how good the fit is and will reveal non-axially symetric structures.

Small galaxies and classification

- Originally (starting with Kron in 1979) simple star-galaxy separation was the goal.
- These days packages do a lot more:
 - Deblending
 - Filtering
 - Photometry shape decomposition
 - FOCAS Jarvis & Tyson, 1981, AJ 86, 476
 - PPP Yee, 1991, PASP, 103 396
 - Sextractor Bertin & Arnouts, 1996, A&A Sup. Ser. 117,393

• m_{small r}/m_{large r}

 $\sum_{i} \mathbf{I}_{i} \mathbf{x}_{i}^{n}$

 $\frac{I}{\sum I_i}$

- Total mag/peak count
- Mag/average surface brightness
- DAOPHOT CHI (PSF fit/predicted PSF fit)
- petroR50/petroR90 (SDSS)
- Often talk about moment analysis.

Same thing in y. n=1 is centroid, n=2 is variance etc.

Note; ratio of second moments useful for ellipticity measurements

Sextractor

 Most commonly used package these days is SExtractor (although for pure star-galaxy separation it is hard to beat using the difference of two apertures).

- Bertin & Arnouts, 1996, A&AS, 117, 393
- User's Manual
- Sextractor for Dummies v4
- Not for good surface photometry, but good for classification and rough photometric and structural parameter derivation for large fields.
 - 1. Background map (sky determination)
 - 2. Identification of objects (thresholding)
 - 3. Deblending
 - 4. Photometry
 - 5. Shape analysis

Thresholding is an alternative to *peak finding*. Look for contiguous pixels above a threshold value.

- User sets area, threshold value.
- Sometimes combine with a smoothing filter *Deblending* based on multiple-pass thresholding

Sextractor Star/Galaxy

Separation

- Lots of talk about neural-net algorithms, but in the end it is a moment analysis.
- ``stellarity''. Typically test it with artificial stars and find it is very good to some limiting magnitude.

Convolved image analysis

NGC 205	And I	Tucana ×
Fornax	Sculptor	Carina
	Leo II	<u>2 arcmin</u>

