IR Astronomy

- Eye response goes to 0 at 7500Å
- Silicon bandgap energy of 1.1eV means a hard cutoff in CCD response at 1.1µ
- `near-IR': $1\mu 2.5\mu$
- `mid-IR': $2.5\mu 25\mu$
- `far-IR': $25\mu 350\mu$

Herschel discovered near IR

First patent for IR detector was to detect icebergs and warm ships 1913

1947 single diode and scanning mirror was used for IR imaging

Atmospheric Windows

Backgrounds

Backgrounds

Note vertical scales on plots!

Why IR?

• Galactic dust extinction law:

 $k_{2.2\mu} \sim 0.1 k_{0.5\mu}$

- Cool stuff: $\lambda_{\text{peak}}(\text{planck}) = 2898/T (\mu)$
 - Cool stars emitted energy peak ~ 1μ
 - Giant planets
 - Dust re-radiation

~ 6-15µ ~ 20-200µ

High-z Universe

- $\lambda = \lambda_0 (1+z)$
- @z=1.8 Ca H&K`break' redshifted to J band
- @z=8 L

Detectors

• Original IR detectors were lead-sulfide, then germanium *bolometers*.

Photoconductive: resistance a very sensitive function of T. Ran at liquid helium temperatures (4K).

• 1980's the first photo-diode (CCD-like) detectors became available with semicondutors that had smaller bandgaps than silicon

larger dark currents!

Material	wavelength(μ)	T _{operate}
Si	<1.1µ	160K
HgCdTe	0.8 - 5 <i>µ</i>	65K
InSb	1 - 5.6µ	35K
SiAs	6 - 27µ	10K

As the bandgap decreases, the dark current goes up at given thermal energy (~ kt) so need to run at lower temperature

Modern (2019) near-IR detectors

- Charge-transfer devices (CCD) hard to build out of IR detector materials
- So, use photo-sensitive layer on top of readout layer (silicon) or MUX. Each pixel has its own amplifier
- Connect the two layers pixel-by-pixel with iridium bumps ("bump bonded")
- Can readout signal multiple times
- Honeywell, Rockwell, Raytheon, Teledyne

CCD Common detector types for the visible through mid-IR Hybrid detector arrays

- $\lambda \sim 250 1050 \text{ nm}$
- Intrinsic Si photoconcuctor
- Photons collected and charge read out in same piece of silicon
- During readout, charge physically moves from one pixel to the next
- Usual readout is correlated double sampling
- Because charge moves, onchip2bjnninggj0possible

- Photon collection separated from readout
 - Optimized detector layer collects charge
 - Optimized readout integrated circuit senses charge in place (it does not move like in a CCD)
- Multiple non-destructive reads typically used to beat down read noise and integrate through cosmic ray hits

Near-IR array

TELEDYNE SCIENTIFIC & IMAGING, LLC A Teledyne Technologies Company

JWST NIRSpec H2RG

- $\dot{\lambda} \sim 1.7$ to $> 5 \ \mu m$
- Intrinsic HgCdTe or InSb photoconductor
- NICMOS, IRAC, WFC3, JWST NIR instruments

STScI Calibration Workshop

Mid-IR array

JWST MIRI

- $\lambda \sim 5 28 \ \mu {
 m m}^{-1}$
- Extrinsic (intentionally doped)
 Si:As photoconducor (other dopants are possible for longer wavelength response)
- IRAC and JWST/MIRI 17

JWST's H2RGs are part of the Teledyne HxRG family

H: HAWAII: HgCdTe Astronomical Wide Area Infrared Imager

- x: Number of 1024 (or 1K) pixel blocks in x and y-dimensions
 - <u>R</u>: <u>R</u>eference pixels
 - G: Guide window capability
- ➔ Substrate-removed HgCdTe for simultaneous visible & infrared observation
- → Hybrid Visible Silicon Imager; Si-PIN (HyViSI)

Name	Format (# of Pixel)	Pixel Pitch (m)	# of Outputs	Institutions, Observatories, and Programs Using HxRG Arrays
	1024×1024	18	1, 2, 16	Wide-field Infrared Survey Explorer (WISE)
ПIKG				Development Programs in Astronomy & Earth Science
H2RG	2048×2048	18	1, 4, 32	James Webb Space Telescope (JWST) - NIRCam, NIRSpec, FGS Joint Dark Energy Mission (JDEM) Astronomy institutions and observatories: Calar Alto, Caltech, CFHT, ESO, ESTEC, Gemini, GSFC, IRTF, ISRO, IUCAA, JHU-APL, Keck, LBNL, LMU, MIT, MPIA, MPS, OCIW, Penn State, RIT, SALT, SAO, Subaru, TATA, U. Arizona, UCLA, UC Berkeley, U. Hawaii, U. Rochester, U. Toronto, U. Wisconsin Space surveillance applications
H4RG-10	4096×4096	10	1, 4, 16, 32, 64	Joint Milli-Arcsecond Pathfinder Survey (J-MAPS) Development Programs in Astronomy
H4RG-15	4096×4096	15	1, 4, 16, 32, 64	In Development, first on sky telescope test in 2011

Some calibration "gotcha's" and where they might originate in the sensor chip assemblies (SCA)

Teledyne Hawaii-RG series is current standard HgCdTe

Electrons as a function of time in a dark setting. This implies an upper limit on the dark current of <.021 $e^{-/pix/s}$

- 1k x 1k, 2k x 2k, 4k x 4k pixels (18µ)
- Long-wave cutoff can be tuned by CdTe mix $(1.7\mu - 5.5\mu)$
- QE >85% from $\sim 0.85\mu 5.5\mu$

Integration time (s)	Number of reads per group	Read noise (e−)
1.476	1	23.4 ± 1.3
2.951	2	13.7 ± 1.0
4.427	3	11.6 ± 0.8
5.902	4	9.9 ± 0.8
7.477	5	9.0 ± 0.7
8.852	6	8.4 ± 0.6
10.328	7	7.7 ± 0.4
11.804	8	7.6 ± 0.3
23.605	16	5.6 ± 0.3
47.210	32	5.0 ± 0.2
94.418	64	4.7 ± 0.1

Hawaii-2RG: linearity

Figure 4.

Median counts as a function of integration time with a constant lamp brightness. A linear fit to the lower data points is shown in blue while a parabolic fit to the upper data points is shown in red.

Table 2.

Linearity characteristics

Deviation at the 1% level 44,500 e-Deviation at the 5% level 80,000 e-Maximum well capacity 119,000 e-

Hawaii-2RG: Persistence

HAWAII-2: Persistent Images = f(t)

Persistence of Hawaii-2RG MBE array in J band. Detector integration time 20 s.

Hawaii-2RG: Messy

Dark current maps for T=40K (left) and T=80K (right); t_{int} = 11'

Space is cool

- IRAS 1983
- ISO 1995
- Spitzer 2003
- WISE 2009
- Kuiper
- SOFIA

Special considerations for IR observing

- Hardly any!
- Chopping/dithering (highly variable background)
 - Subtracts off sky (background)
- Backgrounds are enormous: avoiding saturation requires lots of short exposures
- Don't ignore detector dark/readout noise
- Telescope designers be careful
 - Baffling
 - Cold pupils
 - Underfilled secondaries

Example from Keck/NIRSPEC at R ~ 2000

Single long (900 sec) exposure on a high-z galaxy (note all the cosmic rays and the dominance of night sky emission lines) Subtracted pair of images (note pos. & neg. images and both the sky residuals and the doubling of cosmic ray effects) Difference of two short exposures of a standard star (note how cleanly sky subtracts and the lack of cosmic ray hits)