Astrol 2
Quiz 3 Math Extra Problems
$v_{e s c}=\sqrt{\frac{2 G M}{R}}$
$i=$ initial, $f=$ final

1. What happens to the escape velocity from the surface of a planet if you:
a. Increase the mass of the planet by a factor of 9 but keep the radius constant?
V Csc $\alpha \sqrt{M}$ Vesc, $i \alpha \sqrt{M_{i}}$ Vescif $\alpha \sqrt{M_{f}} M_{f}=9 M_{i}$
Vest, f $\alpha \sqrt{M_{f}}=\sqrt{9 M_{i}}=\sqrt{q} \sqrt{M_{i}}=3 V \operatorname{Vesc}, i$
Vesc increases by a factor of 3
b. Decrease the mass of the planet to $1 / 16$ of the original mass but keep the radius the same? Vesc $\alpha \sqrt{M_{M}}$, Vesci; $\alpha \sqrt{M_{i}}, V$ Vescif $\alpha \sqrt{M_{f}}, M_{f}=\frac{1}{16} M_{i}$

$$
\text { Vescif } \propto \sqrt{M_{f}}=\sqrt{\frac{1}{16} M_{i}}=\sqrt{\frac{1}{16}} \sqrt{M_{i}}=\frac{1}{4} V_{\text {ese } i}
$$

Vest becomes 1/4 the original value
c. Increase the radius by a factor of 25 but keep the mass of the planet the same? $V \operatorname{esc} \alpha \sqrt{\frac{1}{R}}, V$ sc, i $\alpha \sqrt{\frac{1}{R_{i}}}, V$ ese, $f \alpha \sqrt{\frac{1}{R_{f}}}, R_{f}=25 R_{i}$

$$
\text { Vera, } f \propto \sqrt{\frac{1}{R_{f}}}=\sqrt{\frac{1}{25 R_{i}}}=\sqrt{\frac{1}{25}} \sqrt{\frac{1}{R_{i}}}=\frac{1}{5} \text { Vesci }
$$

Verse becomes $1 / 5$ the original value
d. Keep the mass of the planet the same but shrink the radius to $1 / 81$ of its original size? Vesc $\left.\alpha \sqrt{\frac{1}{R}}, V \operatorname{lesc}, i \alpha \sqrt{\frac{1}{R_{i}}}, V \operatorname{Vescif}\right) ~ \alpha \sqrt{\frac{1}{R_{f}}}, R_{f}=\frac{1}{81} R_{i}$

$$
\text { Vesc if } \propto \sqrt{\frac{1}{R_{f}}}=\sqrt{\frac{1}{\frac{1}{8} R_{i}}}=\sqrt{81} \sqrt{\frac{1}{R_{i}}}=9 \text { Uescii }
$$

Vesc increases by a factor of 9
e. Increase the mass of the planet by a factor of 2 and increase the radius by a factor of 8 ? Vesc $\propto \sqrt{\frac{M}{R}}, V_{\text {sc }} i<\sqrt{\frac{M_{i}}{R}}, V_{\text {sc }}+\infty \sqrt{\frac{M_{f}}{R_{f}}}, M_{f}=2 M_{i}, R_{f}=8 R_{i}$

Vest decreases by $1 / 2$
f. Increase the mass of the object that is trying to escape by a factor of 6, but keep everything else the same?

$$
V_{\text {Csc }}=\sqrt{\frac{\partial G M S}{R}}, m_{f}=6 m_{i}
$$

no m in equation, mass of escaping object is not a factor in escape velocity

Vest Stays the same
2. The escape velocity from the surface of Jupiter is $60,000 \mathrm{~m} / \mathrm{s}$. If the mass of Jupiter was quadrupled and its radius shrinks to $1 / 16$ of its original size, what would the new escape
velocity be? $V_{\text {es }} \alpha \sqrt{\frac{M}{R}}, V$ desc, $J \alpha \sqrt{\frac{M_{J}}{R_{j}}}, ~ V e s c,+\alpha \sqrt{\frac{M_{F}}{R_{f}}}, M_{f}=4 M_{J}, R_{f}=\frac{1}{16} R_{J}$

The new Vesc would be $420,000 \mathrm{~m} / \mathrm{s}$
3. If you start from the orbit of the Earth, you have to go $42,000 \mathrm{~m} / \mathrm{s}$ to escape the Sun's gravity. How fast do you have to do if you start at the orbit of Saturn, which is 9 times

$$
\begin{aligned}
& R_{f}=9 R_{i}, V_{e s c, i}=42,000 \mathrm{~m} / \mathrm{s} \\
& V_{e s c}, f \alpha \sqrt{\frac{1}{R_{f}}}=\sqrt{\frac{1}{9 R_{i}}}=\int \frac{1}{9} \sqrt{\frac{1}{R_{i}}}=\frac{1}{3} V_{\text {es }, i}=\frac{1}{3}(42,000 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

You must travel at $14,000 \mathrm{~m} / \mathrm{s}$
4. Derive the formula for the Schwarzschild Radius, starting from the formula for escape velocity.
Vesc $=\sqrt{\frac{2 G M}{R}} \begin{aligned} & \text { Rsch is the Radius where Desc }=c \\ & \text { so set Vesc }=c \text { and } R=R s c h\end{aligned}$

$$
C=\sqrt{\frac{2 G M}{R_{s c h}}} \Rightarrow c^{2}=\frac{2 G M}{R_{s c h}} \Rightarrow R_{\text {sch }}=\frac{2 G M}{C^{2}}
$$

5. How does the Schwarzschild Radius change if you:
a. Increase the mass of your black hole by a factor of 3?

$$
R_{\text {sch }} \propto M_{1} R_{s c h}, i \alpha M_{i}, R_{s c h}, f \alpha M_{f}, M_{f}=3 M_{i}
$$

Rschif $\propto M_{f}=3 M_{i} \propto 3 R_{s c h} i$
Rich increases by a factor of 3
b. Decrease the mass of the black hole to $1 / 5$ of the original mass?

$$
\begin{aligned}
& R_{s c h} \alpha M, R_{s c h} i \alpha M_{i}, R_{s c h} \\
& R_{s c h}, f \propto M_{f}=\frac{1}{5} M_{i} \alpha \frac{1}{5} R_{\text {sch }},
\end{aligned}
$$

$R_{\text {sch }}$ becomes $\frac{1}{5}$ its original size
6. The Schwarzschild Radius of a $5 \mathrm{M}_{\odot}$ black hole is $15,000 \mathrm{~m}$. As the black hole sucks in mass, the Schwarzschild Radius increases. By the time the Schwarzchild radius is $45,000 \mathrm{~m}$, how much mass has the black hole eaten? Give your answer in units of M_{\odot}.
Rsch $\alpha M, R_{\text {sch }, i} \alpha M_{i}, R_{\text {sch }, f} \alpha M_{f}, M_{i}=5 M_{\odot}$

$$
\begin{aligned}
& R_{s c h}, f=45,000 \mathrm{~m} \quad R_{s c h}, i=15,000 \mathrm{~m} \Rightarrow \text { Rsch }, f=3 R_{s c h}, i \\
& M_{f} \propto R_{s c h} f=3 R_{s c h}, \alpha 3 M_{i} \\
& M_{f}=3 M_{i}=3\left(5 M_{\odot}\right)=15 M_{\odot}
\end{aligned}
$$

Black hole grew from $5 M_{0}$ to $15 M_{\odot}$, which means it consumed

