Quiz 2: ASTR-2 Fall 2019

$E=\mathrm{mc}^{2}$ in units of ergs if " m " is in grams and " c " $=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$; Mass of the Sun: 2×10^{33} grams; Luminosity of the Sun: $4 \times 10^{33} \mathrm{ergs} / \mathrm{sec}$

1. Which of the following best describes the technique used to determine the radius of a star (check one):
__ measure the apparent size of the star then make a $\left(1 / \mathrm{d}^{2}\right)$ correction for the distance
\qquad measure the wavelength at which the radiation from the star is the greatest and use the parallax for the distance measurement
X measure the surface temperature and luminosity of the star then use Stephan's law for radiation per unit surface area
\qquad measure the apparent brightness of the star and use the luminosity to solve for the area of the star then divide by 2π.
2. Star A has a trigonometric parallax angle twice as large and the same apparent brightness as Star B (assume no dust toward either star).
a) What is the relative distance of the two stars?

Star A is at $1 / 2$ the distance of star B (one point for getting A, one more for the $1 / 2$)
b) What is the relative luminosity of the two stars?

Star B must have 4x the luminosity of Star A to compensate for the factor of two in distance.

3. The Sun will eventually go through which of the following phases (check all that are correct)?

\qquad planetary nebula
\qquad red-giant branch
_x_main sequence
x white dwarf
4. Why is there a lower mass limit of $\boldsymbol{\sim} \mathbf{0 . 0 8} \mathrm{M}_{\text {sun }}$ for stars (select best answer)?
\qquad because of radiation pressure and the "Eddington Limit"
\qquad because this is the smallest mass for a gas cloud that can collapse under gravity to form a star
\qquad
\qquad because objects below this mass do not reach a core temperature of at least $10^{7} \mathrm{~K}$
\qquad because electron degeneracy pressure prevents hydrogen fusion below this mass

5. Which of the following are True (T), which False (F)?

_T_The Sun and other main-sequence stars generate their luminosity through fusion reactions
T The Sun is losing mass every day
T The fraction of the Sun composed of He is larger now than it was 1 billion years ago
F The luminosity of the Sun decreases a small amount every day as it uses up its hydrogen fuel
6. Which of the following are used in measuring stellar masses (check any that are)? (SCORE 0 through 4, i.e treat it as true/false with no check=false)
__ Proper motion measurements of nearby star
_ x_ Radial velocity measurements of stars in binary systems
\qquad Red Giants that are within 100pc of the Sun
\qquad Newton's Laws of gravity

7. "Hydrostatic" models for the Sun or other stars are based on (check any that are correct):

___ Gas pressure compressing stars to the point just before they become liquid
_x__ Balancing the force of gravity and gas (thermal) pressure at every radius
___ The laws of physics governing the fusion of the elements
__ Static electricity providing support against gravitational collapse
8. Which of the following are true (T) for the evolution of a star with 10 times the mass of the Sun?
__T_A $10 \mathrm{M}_{\text {sun }}$ star will fuse elements up to the mass of Fe in its core
__ A $10 \mathrm{M}_{\text {sun }}$ star will end its life as a much more massive white dwarf compared to the white dwarf the Sun will eventually become
__T_A 10Msun star will explode as a SNII (Type II supernova)
___ $10 \mathrm{M}_{\text {sun }}$ stars are much more common in the Galaxy than stars like the Sun

9. Which of the following support the theory of SN II: core-collapse supernovae?

X SN II are always seen near regions of star formation
_X__ The supernova remnants in the Galaxy show evidence of heavy element enhancements
X There are pulsars (rotating neutron stars) at the centers of some SN II remnants
__ They have luminosities similar to red giant stars
10. How long will a star with 0.5 times the mass of the Sun and 0.1 times the luminosity of the Sun spend on the Main Sequence of the H-R Diagram (the Sun's lifetime is 10x10 ${ }^{9}$ years)?
Lifetime $=($ mass/luminosity $) \times 10$ billion years $=1 / 2 \times 1 / 10 \times 10 \times 10^{9}=0.5 \times 10^{11}$ years
Full credit for writing ($\mathbf{0 . 5} / \mathbf{0 . 1}$) $\times 10 \times 10^{9}$ years

