Quiz 2: ASTR-2 Fall 2019

 $E=mc^2$ in units of ergs if "m" is in grams and "c"= $3x10^{10}$ cm/sec; Mass of the Sun: 2×10^{33} grams; Luminosity of the Sun: 4×10^{33} ergs/sec

1. Which of the following best describes the technique used to determine the radius of a star (check one):

____ measure the apparent size of the star then make a $(1/d^2)$ correction for the distance

____ measure the wavelength at which the radiation from the star is the greatest and use the parallax for the distance measurement

X measure the surface temperature and luminosity of the star then use Stephan's law for radiation per unit surface area

<u>measure the apparent brightness of the star and use the luminosity to solve for the area of the star then divide by 2π .</u>

2. Star A has a trigonometric parallax angle twice as large and the same apparent brightness as Star B (assume no dust toward either star).

a) What is the relative distance of the two stars?

Star A is at ½ the distance of star B (one point for getting A, one more for the ½)

b) What is the relative luminosity of the two stars?

Star B must have 4x the luminosity of Star A to compensate for the factor of two in distance.

3. The Sun will eventually go through which of the following phases (check all that are correct)?

- _x_ planetary nebula
- _x_ red-giant branch
- _x_ main sequence
- _x_ white dwarf

4. Why is there a lower mass limit of ~0.08M_{sun} for stars (select best answer)?

- _____ because of radiation pressure and the "Eddington Limit"
- _____ because this is the smallest mass for a gas cloud that can collapse under gravity to form a star
- _x_ because objects below this mass do not reach a core temperature of at least 10⁷K
- ____ because electron degeneracy pressure prevents hydrogen fusion below this mass

5. Which of the following are True (T), which False (F)?

- **_T__** The Sun and other main-sequence stars generate their luminosity through fusion reactions
- _T__ The Sun is losing mass every day
- _T_ The fraction of the Sun composed of He is larger now than it was 1 billion years ago
- _F_ The luminosity of the Sun decreases a small amount every day as it uses up its hydrogen fuel
- 6. Which of the following are used in measuring stellar masses (check any that are)? (SCORE 0 through 4, i.e treat it as true/false with no check=false)
- ____ Proper motion measurements of nearby star
- _x_ Radial velocity measurements of stars in binary systems
- ____ Red Giants that are within 100pc of the Sun
- _x_ Newton's Laws of gravity
- 7. "Hydrostatic" models for the Sun or other stars are based on (check any that are correct):
- ____ Gas pressure compressing stars to the point just before they become liquid
- _x___ Balancing the force of gravity and gas (thermal) pressure at every radius
- ____ The laws of physics governing the fusion of the elements
- ____ Static electricity providing support against gravitational collapse

8. Which of the following are true (T) for the evolution of a star with 10 times the mass of the Sun?

T A 10M_{Sun} star will fuse elements up to the mass of Fe in its core

 $_$ ___ A 10M_{Sun} star will end its life as a much more massive white dwarf compared to the white dwarf the Sun will eventually become

T A 10M_{sun} star will explode as a SNII (Type II supernova)

 $_$ 10M_{Sun} stars are much more common in the Galaxy than stars like the Sun

9. Which of the following support the theory of SN II: core-collapse supernovae?

- _X_ SN II are always seen near regions of star formation
- _X__ The supernova remnants in the Galaxy show evidence of heavy element enhancements
- _X__ There are pulsars (rotating neutron stars) at the centers of some SN II remnants
- ____ They have luminosities similar to red giant stars
- 10. How long will a star with 0.5 times the mass of the Sun and 0.1 times the luminosity of the Sun spend on the Main Sequence of the H-R Diagram (the Sun's lifetime is 10x10⁹ years)?

Lifetime=(mass/luminosity)x10 billion years = $\frac{1}{2} \times \frac{1}{10} \times \frac{10 \times 10^9}{10} = 0.5 \times 10^{11}$ years Full credit for writing (0.5/0.1) x 10 x 10⁹ years