
Special Relativity

- Various experiments starting in the late 1800s suggested that the speed of light was constant, *independent of the motion of the observer*.
- This is very counter-intuitive.

• The spaceship traveling in the same direction of a photon measures the photon zooming away at the speed of light NO MATTER how fast the spaceship is traveling!

Special Relativity

• Einstein (and others before him) decided to take the speed of light as an invariant and not make any assumptions about the two properties that go into determining speed:

Space and Time

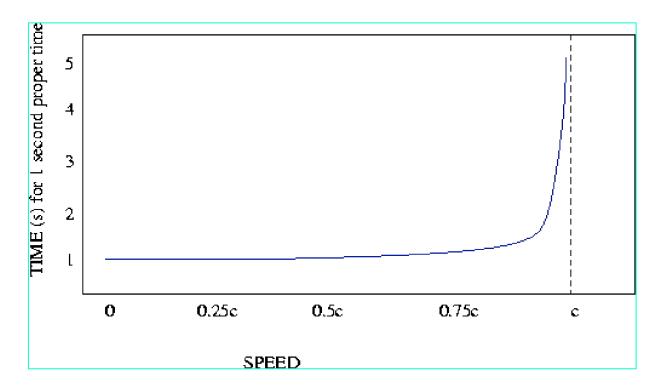
Time Dilation and Length Contraction

• The invariance of the measured speed of light independent of the motion of the observer can be understood if:

(1) Clocks run more slowly as speed increases.

(2) Metersticks shrink as speed increases.

Say What?



Time Dilation

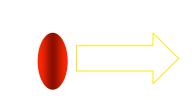
 As your speed with respect to another observer increases, your watch runs more slowly than the observers. This is called `time dilation'

$$T = \frac{T_0}{\sqrt{1 - (v/c)^2}}$$
Note, when v<

Time Dilation

 As v approaches c, v/c -> 1 and the denominator goes to zero. Dividing by zero gives infinity.
 As v approaches c, time grinds to a stop! • Q. Suppose you measure an event that lasts for 1 second by your watch. What will your friend in a spaceship moving at 0.98c measure as the duration of the event?

$$T = \frac{T_0}{\sqrt{1 - (0.98)^2}} = 5.02T_0$$


• Time has been stretched by a factor of 5 for your friend.

Length Contraction

• In the same way, metersticks (space) contracts in the direction of motion.

$$L = L_0 \sqrt{1 - (v/c)^2}$$

• But wait, there's more!

Mass

• Mass grows with speed.

$$M = \frac{M_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

Constant Speed of Light

• The shrinking rulers and slowing clocks conspire to let observers in any moving frame measure the same speed of light.

The Reason Travel to other Galaxies will be Difficult

- The slowing clocks and increasing mass conspire to make it impossible for objects with mass to ever reach the speed of light.
- The increasing mass requires an ever-larger force to accelerate to larger speed and the force needed would become infinite. (F=ma)
- Even if you could find the force, your clock would slow and slow and the last step would take and infinitely long time

Is this right?

- Yes! There are many tests of Special Relativity.
- In particle accelerators mass increase and time dilation effects are routinely measured
- There have been tests flying very accurate clocks in high-speed jets that show time dilation directly.
- We might not be here if not for time dilation in the frame of cosmic rays called muons.