Homework problems for Quiz 2: AY5 Spring 2013

- 1. What element would result from adding 40 neutrons to ${}^{56}_{26}$ Fe and then having 10 of the neutrons " β -decay" (that is, eject an electron each)?
- 2. The Sun will eventually go through which of the following phases?
 - ____planetary nebula
 - ____Red Giant Branch
 - ____SNII
 - ____White dwarf
- 3. In the fusion of four protons into helium, 4.7×10^{-26} grams of matter is turned into energy. How much energy does this amount of matter produce?
- 4. How long will a $4M_{\odot}$ star with $L = 5000L_{\odot}$ spend on the main-sequence? (Hint, the main-sequence lifetime of the Sun is 10 billion years).

- 5. Label the following True (T) or False (F)
 - ____More massive stars have lower temperatures in their cores
 - ____The reason main-sequence stars do not collapse due to gravity is the thermal pressure of the gases they are composed of
 - _____The fuel that provides the energy source for main-sequence stars is mass
 - ____A star that is not in hydrostatic equilibrium with react by changing its radius

6. How much energy is produced by nuclear fusion in the core of the Sun each second?

7. For a SN II, list the important events, in chronological order, leading to the explosive ejection of stellar envelope. Start with the fusion of light elements to produce an iron core.

- 8. Which of the following reactions *release* energy? (Note that not all these reactions actually occur...)
 - $\underline{\qquad} H + H \rightarrow He$ $\underline{\qquad} O + He \rightarrow Ne$ $\underline{\qquad} Cr + Ca \rightarrow Ru$ $\underline{\qquad} Th \rightarrow Rh + Rh$
- 9. The lowest luminosity white dwarfs in the Galaxy have a luminosity of around $10^{-5}L_{\odot}$. Why are there no white dwarfs with lower luminosities than this?
- 10. What is the average density in kg/cm^3 of a $1M_{Sun}$ White Dwarf with a radius of 6000km?
- 11. Given that hydrogen fusion produces 10^{18} ergs per gram of hydrogen:

A. How much energy can the Sun produce with the 2×10^{32} grams of hydrogen in the core region where it is hot enough for fusion?

B. How long could the Sun produce energy via this mechanism at its luminosity of 4×10^{33} ergs/second?

- 12. Which of the following are True (T), which False F?
 - ____The fraction of the Sun composed of helium is larger than it was 1 billion years ago.
 - ____The Sun is losing mass every day
 - ____The fraction of the Sun composed of Fe is larger than it was 1 billion years ago
 - ____The Luminosity of the Sun decreases a small amount every day as it uses up its hydrogen fuel
- 13. Calculate the spin rate of a neutron star assuming it forms from the collapse of the Fe core of a 25 solar mass star. The original core was spinning at 1 revolution per day and had a radius of 500,000km. The final radius of the neutron star is 10km.