Announcements

\div Remember! the reading from $1 / 24$ is due Sunday $2 / 11$ at 5 pm

* Midterm in-class Tuesday, 2/14
- Content: everything through lecture $2 / 7$, homework due $2 / 9$ (Chapters 1,2,3,4). Review the homework and reading assignments
- You will get a formula sheet and all numbers you need
- will be posted this weekend
- Bring a pencil and a non-web-enabled calculator. I'll provide the scantron form
* Midterm review sessions:
* Friday, Feb. 10 4-5 pm NatSci2 Annex 101 (Plato)
* Monday, Feb. 13 4-5pm NatSci2 Annex 101 (Marie)
* Neither is required, you can go to either or both

Midterm Review

Also: Homeworks 1-4, Reading assignments Chapters 1-4

The Earth Spins on its Axis Once Per Day

* Celestial sphere: projection of latitude and longitude onto the sky
* Local coordinates: zenith and horizon

* Observers see the stars rise in the east and set in the west as the Earth turns on its axis
* The North Celestial Pole is overhead at the North Pole, but NOT in Santa Cruz (or anywhere else)

Stars that rise and set along the red tracks are visible for this observer

Stars that rise and set along the white tracks are never visible for this observer: they are always below the horizon

The Earth Orbits the Sun Once Each Year

Zodiac: Constellations on the Ecliptic

Constellation we see at night along the Ecliptic change during the year as the earth moves in its orbit

The Seasons

Tilt of Earth's axis: 23.5°
Angle remains constant as Earth orbits the sun each year

The Seasons, Recap

Light from the sun: delivers energy
Rate of energy flow: Watts (think about your electric bill)
At any place on earth, if the sun is overhead, max energy flow into that patch of ground

If sun is not overhead, same amount of energy flows into a larger patch of ground

The Seasons, Recap

The direction of the Earth's axis is fixed as it orbits the sun. The latitude where the sun is overhead changes over the year. Rate of energy flow from sun into a patch of ground at any latitude changes over the year.
\rightarrow Seasons!

Not caused by changing distance to sun.

$$
\begin{aligned}
& \text { cllck and drag the stickfigure or the red } \\
& \text { latitude circle to change the observer's latitude }
\end{aligned}
$$

observer's latitude: 10.0 N \square labels

Phases of the Moon

* The earth and moon cast shadows
*Phases of the moon are caused by how we see the sun illuminate the moon, NOT the earth's shadow on the moon

* The moon orbits the earth every 27 days
* Does the moon's illumination

Sun's change much in a single day?
:What phase does someone in California see? How about someone in Moscow? In Rio?

Eclipses: Lunar Eclipse

\% The earth and moon cast shadows
*When the earth's shadow falls on the moon: Lunar eclipse
\therefore What is the moon phase during a lunar eclipse?

Eclipses: Solar Eclipse

* The earth and moon cast shadows
*When the moon's shadow falls on the earth: Solar eclipse
\because What is the moon phase during a solar eclipse?

Picture of the Moon's shadow on earth during a solar eclipse

Distance and Angular Size

* you can always measure the angular size α
* sometimes you know the distance, \mathbf{d}
\% use angular size and distance to measure the physical size, s
$\frac{\alpha}{360^{\circ}}=\frac{s}{2 \pi d}$
rearrange, solve for s
$s=\frac{\alpha}{360^{\circ}} \times 2 \pi d$

Distance and Angular Size

* you can always measure the angular size α
* sometimes you know the physical size, s
* use relation between angular size physical sizes to measure the distance, d
$\frac{\alpha}{360^{\circ}}=\frac{s}{2 \pi d}$
rearrange, solve for d

$$
d=\frac{360^{\circ}}{\alpha} \times \frac{s}{2 \pi}
$$

distance, d

Kepler's Laws, Recap

* Kepler's First Law: The orbits of the planets are ellipses, the sun at one focus
* Kepler's Second Law: A planet moving along its orbit sweeps out equal area in equal time

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star. Which planet has the largest speed when it is closest to the star? A B

A: semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { w }}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star. Which planet has the largest speed when it is closest to the star? A
B
A: semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { w }}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star.
Which planet has the largest speed when it is farthest from the star? A
B
A: semi-major axis $=2 \mathrm{AU} \xrightarrow{\square}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star.
Which planet has the largest speed when it is farthest from the star? A
B
Kepler's 2nd law: planets sweep out equal area in equal time
A: semi-major axis $=2 \mathrm{AU} \xrightarrow{\boxed{\text { w }}}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star.
For now, let the star be our Sun. So A and B are planets in our solar system

A: semi-major axis $=2 \mathrm{AU}$
B: semi-major axis $=4 \mathrm{AU}$

Kepler's Laws, Recap

Two planets $(A$ and $B)$ in orbit around our sun.
The semi-major axis of A is $2 A U$, the semi-major axis of B is $4 A U$.

- the semi-major axis of an ellipse is also the average distance of a point on the ellipse to one focus
\rightarrow The average radius of a planet's orbit is the semi-major axis
A: semi-major axis $=2 \mathrm{AU}$
B: semi-major axis $=4 \mathrm{AU}$

Kepler's Laws, Recap

A planet in orbit around our sun.
Period P: time it takes to complete one orbit
A = average radius of the orbit; average distance between the sun and the planet

Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$

Kepler's Laws, Recap

Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$
$P=$ orbital period
$A=$ average radius

$$
\frac{\mathrm{P}^{2}}{\mathrm{~A}^{3}}=\frac{(1 \mathrm{AU})^{3}}{(1 \text { year })^{2}}=\text { Constant }=1
$$

for our solar system, for distance in AU and period in years.

Kepler's Laws, Recap

Two planets (X and Y) in orbit around our sun.
Which one take longest to complete an orbit?
Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$

A X
B
Y
C they take the same time

X: semi-major axis $=2 \mathrm{AU}$

Y: semi-major axis $=4 \mathrm{AU}$

Kepler's Laws, Recap

Two planets (X and Y) in orbit around our sun.
Which one take longest to complete an orbit?
Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$
A
B
B
C they take the same time

X: semi-major axis $=2 \mathrm{AU}$

Y: semi-major axis = 4 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the same star. For now, let the star be our Sun. So A and B are planets in our solar system.

How long does it take planet A to orbit the star?
A semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { w }}$
B: semi-major axis: 2 AU

Kepler's Laws, Recap

How long does it take planet A to orbit the sun?
Period P: time it takes to complete one orbit
A = average radius of the orbit; average distance between the sun and the planet
Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$
A: semi-major axis = $2 \mathrm{AU} \xrightarrow{\text { Lw }}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

How long does it take planet A to orbit the sun?
Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$
A about 9 years
B about 3 years
$\mathrm{P}=$ orbital period
A = average radius
C about 4 years
A: semi-major axis $=2$ AU $\xrightarrow{\boxed{2 w}}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

How long does it take planet A to orbit the sun?
Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$
A about 9 years
B about 3 years
C about 4 years

$$
\begin{aligned}
& P^{2}=A^{3}=(2 \mathrm{AU})^{3}=8 \mathrm{AU}^{3} \\
& \mathrm{P}^{2}=8 \text { years }^{2} \\
& P=\sqrt{ } 8=2.83 \sim 3 \text { years }
\end{aligned}
$$

A: semi-major axis $=2$ AU $\xrightarrow{\text { now }}$
B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the sun. How long does it take planet B to orbit the sun?
A about 9 years
B about 3 years
C about 4 years
A: semi-major axis = $2 \mathrm{AU} \xrightarrow{\text { Lw }}$

Kepler's 3rd law: $\mathrm{P}^{2}=\mathrm{A}^{3}$

B: semi-major axis: 2 AU

Kepler's Laws, Recap

Two planets (A and B) in orbit around the sun. How long does it take planet B to orbit the sun?
A about 9 years

$$
\mathrm{P}^{2}=\mathrm{A}^{3}
$$

B about 3 years
C about 4 years
Semi-major axis is the same for both planets
A: semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { Lw }}$
B: semi-major axis: 2 AU

Describing Motion: Acceleration

* Acceleration: Change in Velocity

Change in Time

- units: $\frac{\text { meters } / \text { second }}{\text { second }}=$ meters $/$ second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
- change in velocity: change in speed or direction

All three motions shown here are accelerations

Newton's First Law

Objects in motion stay in motion, objects at rest stay at rest, unless acted on by a force.

- To change a velocity (an acceleration) requires a Force
- Force = mass x acceleration
familiar form: $\quad F=m$ a
- For as long as you apply a force, you get an acceleration

Describing Motion: Acceleration

- Force = mass \times acceleration familiar form: $F=\mathrm{m}$ a
- For as long as you apply a force, you get an acceleration Acceleration from force of Earth's Gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$

That's 22 miles/hour/second
That gravitational force acts all the time the ball is falling.

What does that mean?
After 1 second: speed is 22 mph After 2 seconds: speed is 44 mph After 3 seconds: speed is 66 mph

Gravity

* The force that holds you onto the Earth, the moon moving in orbit around the earth, the planets moving in their orbits around the sun, is Gravity

Force from gravity:

- Force of M1 on M2 = Force of M2 on M1 (Newton's 3rd law)
- Force weaker for larger d
- Force stronger for larger M1 and/or M2

Force, Acceleration, Momentum

Newton's Law: F = m a
Gravitational force $F=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}$

Which rock has greater acceleration?

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

A the big one
B the small one
C they have the same acceleration
D you don't have enough information

Force, Acceleration, Momentum

Newton's Law: F = m a

Which rock has greater acceleration?

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

A the big one
B the small one
C they have the same acceleration
D you don't have enough information

Force, Acceleration, Momentum

Newton's Law: F = m a

$$
F=m a=\frac{G M m}{d^{2}}
$$

Which rock has greater acceleration?

$$
\begin{gathered}
F=\text { Dirock }^{a}=\frac{G M_{\text {earth }} D_{\text {Prock }}}{d^{2}} \\
a=\frac{G M_{\text {earth }}}{d^{2}}
\end{gathered}
$$

A the big one
B the small one
C they have the same acceleration
D you don't have enough information

Force, Acceleration, Momentum

Newton's Law: F = m a

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

Which rock hits the ground first?
Which rock feels a stronger force from gravity?

Force, Acceleration, Momentum

Newton's Law: F = m a

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

Which rock feels a stronger force from gravity?

$$
a=\frac{G M_{\text {earth }}}{d^{2}}
$$

Which rock has a larger mass?
What does that mean for the force it feels?

Force, Acceleration, Momentum

Newton's Law: F = m a

Which rock has greater acceleration?
Both have the same acceleration
Which rock hits the ground first?
They land at the same time: same acceleration, so same speed when they hit the ground
Which rock feels a stronger force from gravity?
The bigger rock: $\mathrm{F}=\mathrm{m}$ a
They both feel the same acceleration, so the rock with larger mass feels the stronger force. It weighs more!

Kepler's Laws and Gravity

What about planets orbiting stars that are not the sun?
How long does it take planet X to orbit this star?
If the star is twice as massive as the sun, does it take more or less time to complete an orbit?

X: semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { av }}$

Mstar =
$2 \times$ Msun

Kepler's Laws and Gravity

Newton's version of Kepler's 3rd law: $\frac{P^{2}}{A^{3}}=\frac{(2 \pi)^{2}}{G\left(M_{1}+M_{2}\right)} \sim \frac{(2 \pi)^{2}}{G M_{*}}$

Just use star mass M of the star if it is much larger than all the planets

X: semi-major axis =2 AU

Kepler's Laws and Gravity

Newton's version of Kepler's 3rd law: $\frac{P^{2}}{A^{3}}=\frac{(2 \pi)^{2}}{G M^{*}}$
M^{*} is twice as large as Msun
Planet X orbits both the sun and the other star at average distance A
Does P get larger or smaller for X in orbit around the other star?
X : semi-major axis $=2 \mathrm{AU} \xrightarrow{\underline{\text { iw }}}$

Mstar =
$2 \times$ Msun

Kepler's Laws and Gravity

Newton's version of Kepler's 3rd law: $\frac{P^{2}}{A^{3}}=\frac{(2 \pi)^{2}}{G M^{*}}$
M^{*} is twice as large as Msun
Planet X orbits both the sun and the other star at average distance A
Does P get larger or smaller for X in orbit around the other star?
X: semi-major axis =2 AU

Mstar =
$2 \times$ Msun

Kepler's Laws and Gravity

Where does planet X feel the strongest force from gravity?

X: semi-major axis $=2$ AU $\xrightarrow{\square}$

Kepler's Laws and Gravity

Where does planet X feel the strongest force from gravity?
$\mathrm{G}=\mathrm{a}$ number that
$F=$ force due to gravity
$F=\frac{G M m}{d^{2}}$
$\mathrm{M}=$ mass of star
$\mathrm{m}=$ mass of planet
$d=$ distance between planet describes the strength of the gravitational force everywhere in and star
X: semi-major axis $=2 \mathrm{AU}$
1 AU
Y: semi-major axis: 2 AU

Kepler's Laws and Gravity

At what point in its orbit is planet X accelerating?

X: semi-major axis $=2 \mathrm{AU} \xrightarrow{\text { Iw }}$

Y: semi-major axis: 2 AU

Kepler's Laws and Gravity

Where does planet X feel the strongest force from gravity?
Closest approach. $F=G M p M s / d^{2}$, force largest where d smallest
At what point in its orbit is planet X accelerating?
Always: it is moving along a curved path, so its velocity is always changing
Where is the velocity of planet X largest?
Closest approach to the star. We know this from Kepler's law, Aconservation of angular momentum and conservation of energy

Force, Acceleration, Momentum

Newton's Law: $\mathrm{F}=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.
Is the acceleration of the rocks larger or smaller than it was on earth?

A smaller
B larger
C the same
D don't know enough to answer

Force, Acceleration, Momentum

Newton's Law: $\mathrm{F}=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {earth }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.
Is the acceleration of the rocks larger or smaller than it was on earth?

A smaller
B larger
C the same
D don't know enough to answer

Force, Acceleration, Momentum

Newton's Law: F $=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.
Is the acceleration of the rocks larger or smaller than it was on earth?

$$
F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
$$

A smaller
B larger
C the same
D don't know enough to answer

Force, Acceleration, Momentum

$$
\begin{aligned}
& \frac{\text { Change in Momentum }}{\text { Change in Time }} \\
& F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
\end{aligned}
$$

Now drop the rocks on the moon.
Is the acceleration of the rocks larger or smaller than it was on earth?

$$
F=\text { nirock } a=\frac{G M_{\text {moon }} \text { nirock }}{d^{2}}
$$

A smaller
B larger

$$
a=\frac{G M_{\text {moon }}}{d^{2}}
$$

C the same
D don't know enough to answer

Force, Acceleration, Momentum

Newton's Law: $\mathrm{F}=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.
Do the rocks fall faster or slower than they did on earth?

$$
\begin{gathered}
F=\text { Drock } a=\frac{G M_{\text {moon }} \text { Drock }}{d^{2}} \\
a=\frac{G M_{\text {moon }}}{d^{2}}
\end{gathered}
$$

Force, Acceleration, Momentum

Newton's Law: $\mathrm{F}=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.

Do the rocks weigh more or less than they did on earth?

$$
\begin{aligned}
& F=m_{\text {rock }} \text { arock } \\
& \text { arock }=\frac{G M_{\text {moon }}}{d^{2}}
\end{aligned}
$$

Force, Acceleration, Momentum

Newton's Law: F $=\mathrm{ma}=\frac{\text { Change in Momentum }}{\text { Change in Time }}$

$$
F=m_{\text {rock }} a=\frac{G M_{\text {moon }} m_{\text {rock }}}{d^{2}}
$$

Now drop the rocks on the moon.
Is the acceleration of the rocks larger or smaller than it was on earth? smaller

Do the rocks fall faster or slower than they did on earth? slower

Do the rocks weigh more or less than they did on earth? less

Surface Gravity and Weight

* The earth's surface gravity \mathbf{g} : acceleration you feel at the surface of the earth, pulls you toward the ground
$\% \mathbf{g}$ is an acceleration, but it is an important one so it gets its own letter

Surface Gravity: $\quad F_{\text {earth } \rightarrow \text { me }}=G M_{m e} M_{\text {earth }}$ R^{2} earth

The force of the earth's gravitational pull on me $\mathrm{F}_{\text {earth } \rightarrow \mathrm{me}}=\mathrm{Ma}=\mathrm{M}_{\mathrm{me}} \mathbf{g}$
$=$ my mass x acceleration from Earth's gravitational pull

Surface Gravity and Weight

* The earth's surface gravity \mathbf{g} : acceleration you feel at the surface of the earth, pulls you toward the ground
$\because \mathbf{g}$ is an acceleration, but it is an important one so it gets its own letter

Surface Gravity: $\quad F_{\text {earth } \rightarrow \text { me }}=G M_{m e} M_{\text {earth }}$
R^{2} earth

How does my acceleration change if I am far above the Earth's surface in a balloon?

Force, Mass and Weight

* Your mass: amount of stuff in you
- same anywhere in the universe
* Your weight: Force on your mass due to Earth's surface gravity
* My mass: 68 kg
* Acceleration of earth's gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$
* Force: $668 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$, my weight

Force, Mass and Weight

Jupiter has a different mass and radius than earth
$\mathbf{a}_{\text {Gravity, Jupiter }}=\frac{G M_{\text {Jupiter }}}{R^{2}{ }_{\text {Jupiter }}}$
$M_{\text {Jupiter }}=2 \times 10^{27} \mathrm{~kg}$
R^{2} Jupiter $=7 \times 10^{7} \mathrm{~m}$
a Gravity, Jupiter $=27 \mathrm{~m} / \mathrm{s}^{2}$
Compare g, acceleration due to Earths gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$
You would experience a greater acceleration from Jupiter's gravity

You would weigh more on Jupiter
Moon has weaker surface gravity: you weigh less on the moon

Radius of Jupiter

Orbits and Circular Motion

- Combine:

Acceleration required to keep an object in circular motion: $\frac{v^{2}}{d}$ with acceleration from Gravity $=\frac{G M}{d^{2}}$

$$
\begin{aligned}
& \frac{v^{2}}{d}=\frac{G M}{d^{2}} \\
& v=\sqrt{\frac{G M}{d}}
\end{aligned}
$$

$v=$ speed for an object in stable circular motion around mass M at distance d

- Depends on M and d, not m
- slower for d large, M small

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}}
$$

speed for an object in stable circular motion around mass M at distance d
escape speed for an object at distance d from mass M
For an orbit around mass M, being at larger $d=$ smaller vescape

Vescape larger for larger M
Does it depend on the mass of the rocket?

Light

Energy carried by a single photon is related to its wavelength and frequency:

Energy $=\mathrm{E}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda}$

$$
\begin{aligned}
& \lambda=\text { wavelength Units: meters } \\
& v=\text { frequency Units: sec }{ }^{-1} \\
& \mathrm{c}=\text { speed of light } \\
& 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=300,000,000 \mathrm{~m} / \mathrm{s} \\
& \text { h = Planck's constant } \\
& 6.626 \times 10^{-24} \text { Joule sec }
\end{aligned}
$$

- Energy increases if v increases: wave vibrates faster
- Energy decreases if λ increases: wave size gets larger

Planck's constant h:
Same everywhere in the universe (like G, a "universal constant") Sets how wave size relates to the amount of energy in a photon packet

Light

Prisms bend the path of photons according to their energy White light contains a continuum of energies (wavelengths)
We see the energy of photons as color of light Different colors = different wavelengths of light

Violet light: shortest wavelength we can see, highest energy Red light: longest wavelength we can see, lowest energy

$$
1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}=1 \times 10^{-6} \mathrm{~mm}
$$

Thermal Emission

What is this graph? Number of photons (amount of energy) emitted at each wavelength

Total number of photons: add up intensity at each wavelength

Peak: wavelength where maximum number of photons emitted

Graph of thermal radiation always has this shape.

Number of photons at each wavelength is easy to predict

\longleftarrow ultraviolet infrared \longrightarrow

Properties of Thermal Radiation

Wien's Law: hotter object: wavelength were most of the photons are emitted is bluer

$$
\lambda_{\text {peak }}=\frac{2.9 \mathrm{~mm} \mathrm{~K}}{\mathrm{~T}}
$$

\leftarrow divide 2.9 by temperature in K to get peak wavelength in mm

We can use the thermal radiation spectrum as a thermometer:
measure the peak wavelength and learn the temperature

Thermal Emission

Cooler object:

- peak number of photons is emitted at red wavelengths: red color
- fewer total photons emitted: dim

Hotter object:

- peak number of photons is emitted at blue wavelengths: blue color
- we see white because our eyes aren't good at seeing very blue light
- more total photons emitted: bright

Thermal Emission

Cooler object: peak number of photons is emitted at red wavelengths, fewer total photons emitted

Hotter object: peak number of photons is emitted at blue wavelengths, more total photons emitted

Light and Atoms

* Atoms: release and absorb photons only with certain energies
- Different chemical elements: determined by number of protons and electrons
- Each element has a unique set of energy levels that its electrons can occupy
- Electrons can only move between available energy levels

Get energy = absorb a photon, electron moves to a higher energy level Release energy = emit a photon, electron falls to a lower energy level

Hydrogen:
Emission
and
Absorption
of light

41

656

Light and Atoms

* Atoms: release and absorb photons only with certain energies
- Different chemical elements: determined by number of protons and electrons
- Each element has a unique set of energy levels that its electrons can occupy
- Each element has its own fingerprint of energy levels

Light Emission "Fingerprints"

helium

Doppler Effect

Light from an object moving toward you: peaks bunch up. Wavelength gets shorter, frequency gets faster.

Remember: $\mathrm{E}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda} \quad$ So light become blue: Blue Shift
For an object moving away from you, peaks stretch out.

Wavelength gets longer, frequency gets slower.

Light becomes redder: Red Shift

Doppler Effect

The amount of wavelength change you measure, red or blue, is proportional to the velocity of the light source toward you or away from you.

This is the velocity of the source along your "line of sight"

Doppler formula for light: $\frac{V_{\text {Los }}}{C}=\frac{\Delta \lambda=\lambda_{\text {shift }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}$
$V_{\text {Los }}$ is also called the "redshift" c

If $\lambda_{\text {shift }}>\lambda_{\text {rest }}, V_{\text {Los }}>0$ and the source is moving away from the observer

Doppler Effect

Doppler shift tells you only about the velocity along your line of sight.

Dotted: line of sight Red and gray arrows: velocity

This observer doesn't see any Doppler shift: object is not moving toward or away from him.

Doppler Shift

We can measure the velocity (direction and speed) of a light source from its Doppler Shift.

Laboratc Object 1

Object 2

Red shift, moving away

Object 3

Larger red shift, moving away faster

Blue shift, moving toward you

Larger blue shift, moving toward you faster

Fun with Gravity: Finding Planets

* Gravity can be used to weigh stuff we can't put on a scale, like stars and planets

$$
\frac{d^{3}}{P^{2}}=\frac{G M}{(2 \pi)^{2}}
$$

\% We can even use it to weigh stuff we can't see, and prove that it is there

Center of Mass and Orbits

Newton's 3rd Law: if something (like a moon) is in orbit around something more massive (like a planet), the massive object feels a force, too.

Two objects orbit their Center of Mass (CM). Both have the same orbital period.

Kepler's 1st Law: planets orbit in ellipses with the sun at one focus. The Center of star 1
star 2 mass $2 M$ Mass is what is really at the focus.

For one object much more massive than the other, CM very close to the center of the massive object, sometimes inside

Gravitational Tugs

The motions are tiny: 0.001 arcseconds, just too tiny to measure from the ground.

- The Sun's motion around the solar system's center of mass depends on tugs from all the planets.
- Astronomers around other stars that measured this motion could determine the masses and orbits of all the planets. Gaia satellite is making this measurement now!

- Measuring a star's Doppler shift can tell us its motion toward and away from us.
- Current techniques can measure motions as small as $1 \mathrm{~m} / \mathrm{s}$ (walking speed!).

Newton's Version of Kepler's 3rd Law

$$
\frac{d^{3}}{P^{2}}=\frac{G\left(M_{1}+M_{2}\right)}{(2 \pi)^{2}} \text { This is the more exact version. }
$$

1) Measure the Doppler velocity shift of the star around the $C M$ of the orbit. Look for the pattern to repeat and measure the orbit period. This is also the period of the orbit of the planet around the CM
2) We know a bunch about stars (later in the quarter), use that to estimate the mass of the star $\left(\mathrm{M}_{1}\right)$
3) Then use Newton's version of Kepler's 3rd law, assume M_{2} small, solve for $\mathrm{d}=$ radius of orbit of the planet

Velocity of star 51 Pegasi
Planet discovered in 1995

Newton's Version of Kepler's 3rd Law

$$
\frac{d^{3}}{P^{2}}=\frac{G\left(M_{1}+M_{2}\right)}{(2 \pi)^{2}} \text { This is the more exact version. }
$$

1) Measure the Doppler velocity shift of the star around the CM of the orbit, measure the orbit period, also the period of the orbit of the planet around the CM
2) Estimate the mass of the star $\left(M_{1}\right)$ from knowing about stars
3) Use Newton's version of Kepler's 3rd law solve for $d=$ radius orbit of planet 4) Compute velocity of planet: $v=\frac{2 \pi d}{P}$ 5) use conservation of momentum to solve for planet mass: have M,v for star from steps 1 and 2 , v for planet from step 4. $\mathrm{mv}_{\text {star }}=m v_{\text {planet }}$

Velocity of star 51 Pegasi
Planet discovered in 1995

The Automated Planet Finder at Lick Observatory on Mt. Hamilton A machine for Doppler detection of extra solar planets

Transits and Eclipses

- A transit is when a planet crosses in front of a star.
- The resulting eclipse reduces the star's apparent brightness and tells us planet's radius (if we know the star's radius!)
- No orbital tilt: accurate measurement of planet mass if you also get radial velocity
- You "miss" most of the planetary systems, though

- The idea of the Kepler Mission was from Bill Borucki, NASA Ames, in the Mid 1980s
- If you sample a large enough number of stars (a "statistically significant sample"), you can determine the fraction of Sun-like stars that have Earth-size planets in Earthsize orbits
- Having a large sample size is essential to the entire project
- 95 megapixel space camera built to do one thing exceptionally well
- Kepler Mission is optimized for finding potentially habitable planets (0.5 to 1.5 Earth radii) in the Habitable Zone (near 1 AU) of Sun-like stars
- Continuously monitoring 150,000 stars for 3.5 years (now 7.5 years!) using a 1 meter telescope

The habitable zone is defined a planetary temperature range when liquid water can exist at the planet's surface

Kepler-11: Picking out the Planets

Table 1 | Planet properties

Planet	Period (days)	Epoch (BJD)	Semi-major axis (AU)	Inclination (${ }^{\circ}$)	Transitduration (h)	Transit depth (millimagnitude)	Radius $\left(R_{\oplus}\right)$	Mass $\left(M_{\oplus}\right)$	Density $\left(\mathrm{g} \mathrm{~cm}^{-3}\right)$
b	10.30375 ± 0.00016	$2,454,971.5052 \pm 0.0077$	0.091 ± 0.003	$88.5_{-0.6}^{+1.0}$	4.02 ± 0.08	0.31 ± 0.01	1.97 ± 0.19	$4.3{ }_{-2.0}^{+2.2}$	$3.1{ }_{-1.5}^{+2.1}$
c	13.02502 ± 0.00008	$2,454,971.1748 \pm 0.0031$	0.106 ± 0.004	$89.0_{-0.6}^{+1.0}$	4.62 ± 0.04	0.82 ± 0.01	3.15 ± 0.30	$13.5{ }_{-6.1}^{+4.8}$	$2.3_{-1.1}^{+1.3}$
d	22.68719 ± 0.00021	$2,454,981.4550 \pm 0.0044$	0.159 ± 0.005	$89.3{ }_{-0.4}^{+0.6}$	5.58 ± 0.06	0.80 ± 0.02	3.43 ± 0.32	$6.1_{-17}^{+3.1}$	$0.9{ }_{-0.3}^{+0.5}$
e	31.99590 ± 0.00028	$2,454,987.1590 \pm 0.0037$	0.194 ± 0.007	$88.8{ }_{-0.2}^{+0.2}$	4.33 ± 0.07	1.40 ± 0.02	4.52 ± 0.43	$8.4{ }_{-1.9}^{+2.5}$	$0.5_{-0.2}^{+0.2}$
f	46.68876 ± 0.00074	$2,454,964.6487 \pm 0.0059$	0.250 ± 0.009	$89.4{ }_{-0.2}^{+0.3}$	6.54 ± 0.14	0.55 ± 0.02	2.61 ± 0.25	$2.3_{-1.2}^{+2.2}$	$0.7_{-0.4}^{+0.7}$
g	118.37774 ± 0.00112	$2,455,120.2901 \pm 0.0022$	0.462 ± 0.016	$89.8_{-0.2}^{+0.2}$	9.60 ± 0.13	1.15 ± 0.03	3.66 ± 0.35	<300	.

Exoplanet Detections, 1989-2009

Exoplanet Detections, 1989-2013

Replet

Kepler Detections:

(Based on 34 Months of Data)

- Doppler Vel. Transit O Imaging Eclipse Timing Microlensing O Kepler

Exoplanet Discoveries

HR 8799: 4-planet system

One more important thing to add:

About 8\% of stars

- Giant planets (which are easiest to detect) are preferentially found around stars that are abundant in iron - "metallicity"
- Iron is the easiest heavy element to measure in a star
- Heavy-element rich planetary systems make planets more easily

The frequency of planets within 85 days of Sun-like stars

Based on ~ 2300 planet candidates
Fressin et al. (2013)

Stars within 30 lightyears of the Sun

$0 \quad 0$

B
0

A

F

G 20

K 44

M 246

Todd Henry, Georgia State University

The frequency of planets within 50 days of M stars

1.5 planets per M star within ~ 80 days

