Announcements

*Register for Connect, register your iClickers

- Register iClickers at https://www1.iclicker.com/ or REEF account profile
- Purchase the REEF polling app, create an account, register and get a subscription at app.reef-education.com (or the app store or Google Play; you still have to register at reef-education and get a subscription)
*Go to Section starting Friday!
* No section Monday, it's the M. L. King holiday
* First homework assigned and available, due next Thursday at noon
* First reading assignment due next Tuesday, before class
* Permission codes: email the astro dept. manager Jenna Scarpelli, jscar@ucsc.edu, and copy me (crockosi@ucsc.edu) to get one
* Go to a section that works for your schedule, even if it isn't the one you are registered for. Please don't everyone bail on the Friday section!

Tutoring information, as announced in class

* UCSC Learning Support Center small group tutoring:

Spencer Hatch
Email: smhatch@ucsc.edu
Sign-up: http://Iss.ucsc.edu/programs/small-group-tutoring/index.html

Doing Some Night-time Astronomy

* Make groups of 1-4 students, with at least one digital camera (a cell phone camera is fine) in the group or at least one person willing to sketch
: Each day that it is clear at the end of class, we'll go to the bridge just down from this room and look at the sky near the southern and eastern horizon (directions we can see from there)
\% Take a picture or make a sketch of what you see
* Be sure to include some trees or a building for reference
* Try to get the same trees or buildings each time
\% Save the pictures and sketches, and we'll look at how the sky changes over the quarter

Chapter 1: The Earth in the Solar System

* We observe: motion of the sun and stars each day, changes in the night sky over the course of a year
* Putting these observed patterns together to make a 3D model of the solar system:

The earth spins on its axis once each day
The earth orbits the sun once each year

* Adding other things:
moon and eclipses
planets

The Earth Spins on its Axis Once Per Day

* Everything in the sky appears to rise and set once per day

The Earth Spins on its Axis Once Per Day

* Define a coordinate grid to measure the position of things (stars, the sun) on the sky, just like on earth
* "Celestial Sphere": projection of latitude and longitude onto the sky

a We can locate any place on Earth's surface by its latitude and longitude.

Celestial Sphere

* "Celestial Sphere": projection of latitude and longitude onto the sky
* North and South poles of Earth line up with the North and South Celestial Poles
* Equator of the Earth lines up with the Celestial equator

a We can locate any place on Earth's surface by its latitude and longitude. longitude.

The Earth Spins on its Axis Once Per Day

* As the earth rotates on its axis, the celestial sphere appears to rotate around the earth

Everything in the sky appears to rise and set once per day

Constellations: Fixed Patterns of Stars

* Everything outside the solar system stays stationary on the celestial sphere:
* The stars appear in the same patterns, constellations, each time we see them
* Stars don't move relative to each other: constellations look the same each night as they rise and set.

* Absolute vs. Local Coordinates
* Celestial sphere is an "absolute" coordinate system. Locations of the constellations on the Celestial Sphere are the same for everyone, always.

North Celestial Pole

South Celestial Pole

\% Define some local coordinates:

- Direction "straight up" is called the zenith, no matter where you are
- Your horizon is always the lower edge of what you can see, no matter where you are

Zenith (Up)

North Celestial Pole

South Celestial Pole

* Why is this useful? So we can describe where an object on the Celestial Sphere (like a star) appears to us in the sky
* Example: The North Celestial Pole is overhead at the Earth's North Pole...

You are standing here, at the North
Pole, looking straight up.
Your zenith is the North Celestial Pole

Looking at the zenith (straight up) while standing at the Earth's North Pole

* Absolute vs. Local Coordinates: The North Celestial Pole is overhead at the Earth's North Pole...

You are standing here, at the North

Pole, looking straight up.
Your zenith is the North Celestial Pole
Celestial equator is your horizon. You never see stars in the south part of the Celestial Sphere because they are always below your horizon

Looking at the zenith (straight up) while standing at the Earth's North Pole

* Absolute vs. Local Coordinates: The North Celestial Pole is overhead at the North Pole...
...but NOT in Santa Cruz (or anywhere else)

Stars that rise and set along the red tracks are visible for this observer

Stars that rise and set along the white tracks are never visible for this observer: they are always below the horizon
: Absolute vs. Local Coordinates: The North Celestial Pole is overhead at the North Pole...
...but NOT in Santa Cruz (or anywhere else)
Half circle: 180 degrees Line from horizon, through zenith, back

\% Absolute vs. Local Coordinates: The North Celestial Pole is overhead at the North Pole...
...but NOT in Santa Cruz (or anywhere else)

Observer latitude = angle between Zenith and Celestial Equator

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can I see an object at:

1) The North Celestial pole?

A yes
B no
2) The South Celestial pole?

A yes
B no
3) The Celestial equator?

A yes
B no

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can I see an object at:

1) The North Celestial pole?

> A yes
> B no
2) The South Celestial pole?

A yes
B no

Greenwich

longitude $=80^{\circ} \mathrm{W}$
itude and

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

1) A star that passes straight overhead (at the zenith) for someone who lives in Tokyo at 36° North latitude and 140° East longitude?

A yes
B no

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

1) A star that passes straight overhead (at the zenith) for someone who lives in Tokyo at 36° North latitude and 140° East longitude?

A yes
B no

Observer latitude = angle between Zenith and Celestial Equator

Angular distance measured (in degrees) on the Celestial Sphere from the zenith to the Celestial Equator is equal to your latitude. (See slides 13,14)
The observer at Tokyo is at the same latitude as you are in Santa Cruz, so their zenith points to the same place on the Celestial Sphere as yours.
Therefore, if the star passes overhead for you, it also passes overhead for the friend in Tokyo.

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

2) A star that passes straight overhead for someone who lives in Rio de Janeiro, Brazil, at 22° South latitude and 43° West longitude?

A yes
B no

You are here Where is Brazil?

Greenwich

 angle between Zenith and Celestial Equator | vecan |
| :---: |
| gitude. |
| and |

Question:

\% Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:
2) A star that passes straight overhead for someone who lives in Rio de Janeiro, Brazil, at 22° South latitude and 43°
West longitude?

A yes
B no

Observer latitude = angle between Zenith and Celestial Equator

Hint \#1: how many degrees long is the orange arc, the distance from the celestial equator to the horizon?

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

2) A star that passes straight overhead for someone who lives in Rio de Janeiro, Brazil, at 22° South latitude and 43°
West longitude?

A yes
 B no

Hint \#1: how many degrees long is the orange arc, the distance from the celestial equator to the horizon?
Start by asking what the length of the pink arc is? Now what is the sum of the pink plus orange arcs? (What is the distance in degrees from zenith to horizon?)
Your friend's latitude is 22 degrees South. Where is her zenith on the celestial sphere? What is the condition for you to be able to see that same star?

Observer latitude = angle between Zenith and Celestial Equator

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

2) A star that passes straight overhead for someone who lives in Rio de Janeiro, Brazil, at 22° South latitude and 43°
West longitude?

A yes
B no

Observer latitude = angle between Zenith and Celestial Equator

Hint \#1: how many degrees long is the orange arc, the distance from the celestial equator to the horizon?
Start by asking what the length of the pink arc is? 36 degrees Now what is the sum of the pink plus orange arcs? (What is the distance in degrees from zenith to horizon?) 90 degrees So the answer to Hint \#1 is 90-36 = 54 degrees
Your friend's latitude is 22 degrees South. Where is her zenith on the celestial sphere? 22 degrees below the Celestial Equator What is the condition for you to be able to see that same star? It has to be above your horizon.

Question:

* Santa Cruz is at 36° north latitude and 122° west longitude. From here, can we see:

2) A star that passes straight overhead for someone who lives in Rio de Janeiro, Brazil, at 22° South latitude and 43° West longitude?

A yes
B no
Any observer can see from the Zenith to the horizon, which is 90 degrees. (See slides $9,13,14$)

The distance from zenith to the Celestial Equator is the observer's latitude. (Slide 14) For you, that's 36 degrees North. For your friend in Brazil, that's 22 degrees South.
$90-36=54$, so for you there are 54 degrees from the Celestial equator to the horizon.

So, if a star passes overhead (at the zenith) for someone at 54 degrees south latitude, you would see that same star on the horizon.

Your friend in Brazil is farther North, at 22 degrees South. So a star that
 passes overhead for her is at $54-22=32$ degrees above your horizon.

The Earth Orbits the Sun Once Each Year

\therefore The bright sky makes it impossible to see stars during the day
*We can only see half the stars in the sky at any time during the year: light from the sun prevents us from seeing the other half
\therefore Which stars we can at night changes over the course of the year

The Earth Orbits the Sun Once Each Year

*We always see the stars in the same patterns (the constellations)

* They are at fixed locations on the Celestial Sphere
*But at different times of the year we see different constellations at night
north celestial stars in
pole

Sun
south celestial
pole

- 2010 Pearson Education, Inc.

The Earth Orbits the Sun Once Each Year

*We always see the stars in the same patterns (the constellations)

* They are at fixed locations on the Celestial Sphere
*We also can't see different constellations at different times of the year. That's because which constellations are above the horizon during the day changes throughout the year.
* The Sun appears to move on the Celestial Sphere!

The Earth Orbits the Sun Once Each Year

*We always see the stars in the same patterns (the constellations)

* They are at fixed locations on the Celestial Sphere
\% But we see different constellations at night at different times of year

* The Sun appears to move on the Celestial Sphere!
* Ecliptic: the path on the Celestial Sphere that the Sun appears to travel over the year

The Earth Orbits the Sun Once Each Year

Another view: the direction faced by the night side of earth changes as the earth moves in its orbit

The Earth Orbits the Sun Once Each Year

Zodiac: Constellations on the Ecliptic

Constellation we see at night along the Ecliptic change during the year as the earth moves in its orbit

Earth's Axis Tilt and Seasons

* Big Picture: Planets (including earth) orbit the sun in a plane

: The earth's axis is tilted relative to the plane of its orbit by 23.5°
* Therefore the ecliptic, the path we see the sun take in the sky over a year, is tilted relative to the celestial equator by 23.5°

Earth's Axis Tilt and Seasons

© 2010 Pearson Education, Inc.

* The earth's axis is tilted relative to the plane of its orbit by 23.5°
* Therefore how different parts of the earth are illuminated by the sun changes during the year

Seasons

Northern Winter: axis tilt away from Sun.
Northern Winter $=$ Southern Summer

Seasons

Northern Summer: axis tilt toward the Sun.

Northern Summer = Southern Winter

Summer (June) Solstice

Seasons

Spring and Fall: axis tilt is neither toward nor away from the sun.
(3) Spring/Fall: Spring and fall begin when sunlight falls equally on both hemispheres, which happens twice a year: In March, when spring begins in the Northern Hemisphere and fall in the Southern Hemisphere; and in September, when fall begins in the Northern Hemisphere and spring in the Southern Hemisphere.

Southern and Northern hemispheres face the sun at the same angle.

Earth's Axis Tilt and Seasons

Why does this matter?

* Sunlight is energy
* The total energy that the earth gets from the sun is the same all year
* The tilt of the Earth's axis changes how much of that energy any one place on earth gets over the course of a year

The tilt of the Earths' axis means:
1.Energy from the sun is spread over a smaller or larger area of the earth during the year: the intensity changes
2.The length of the day changes over a year: each place has more or fewer hours of illumination in each day

Earth's Axis Tilt and Seasons

The tilt of the Earths' axis means:
1.Energy from the sun is spread over a smaller or larger area of the earth during the year: the intensity changes

Axis Tilt: Earth's axis points in the same direction throughout the year, which causes changes in Earth's orientation relative to the Sun.

Earth's Axis Tilt and Seasons

The tilt of the Earths' axis means:
2.The length of the day changes over a year: each place has more or fewer hours of illumination in each day

Earth's Axis Tilt and Seasons

© 2010 Pearson Education, Inc.

Check out this link for a description of this credit: Tunc Tezel figure and this one for the animation

Seasons

Northern Winter/Southern Summer: axis tilt away from Sun.

Southern hemisphere gets most concentrated energy from the sun. The sun's path is higher in the sky in the South and the sun is above the horizon longer.

Northern hemisphere gets least concentrated energy, the sun is lower in the sky and the days are shorter.

Seasons

Southern Winter/Northern Summer: axis tilt away from Sun.

Northern hemisphere gets most concentrated energy from the sun, longest days

Southern hemisphere gets least concentrated energy, shortest days

Summer (June) Solstice

Seasons

Spring and Fall: axis tilt is neither toward nor away from the sun.
(3) Spring/Fall: Spring and fall begin when sunlight falls equally on both hemispheres, which happens twice a year: In March, when spring begins in the Northern Hemisphere and fall in the Southern Hemisphere; and in September, when fall begins in the Northern Hemisphere and spring in the Southern Hemisphere.

Southern and Northern hemispheres face the sun at the same angle.

Seasons

* Axis tilt also changes the distance of each hemisphere to the sun. Does that matter?
- Distance from the earth to the sun: 150 million $\mathrm{km}\left(1.5 \times 10^{8} \mathrm{~km}\right)$
- Diameter of the earth: $13,000 \mathrm{~km}\left(1.3 \times 10^{4} \mathrm{~km}\right)$
* The change in distance to the sun due to the axis tilt of any place on earth must be smaller than the size of the earth's diameter.
* Diameter of the earth is 10,000 times smaller than the size of its orbit.
$\%$ A 1% change is a factor of $1 / 100$. So $1 / 10,000$ is a change of 0.01%
$\% 0.01 \%$ is not very big, so the distance change caused by the axis tilt is not a big factor in the changing seasons
\because What matters is the change in the intensity of the incoming solar energy caused the the axis tilt

The Moon and Earth

\%What determines the appearance of the moon?
What is moonlight?
Why does the moon rise and set?
Why does the shape of the moon (as we see it) change?

Orbits in the Solar System

\% The earth and moon cast shadows

* Phases of the moon are caused by how we see the sun illuminate the moon, NOT the earth's shadow on the moon

Orbits in the Solar System

\% The earth and moon cast shadows

* Phases of the moon are caused by how we see the sun illuminate the moon, NOT the earth's shadow on the moon

Orbits in the Solar System

* Zoom in: Moon orbits around around the Earth

: This is why we see the moon have phases

Orbits in the Solar System

*The earth and moon cast shadows

* When the earth's shadow falls on the moon: Lunar eclipse

Orbits in the Solar System

*The earth and moon cast shadows
*When the moon's shadow falls on the earth: Solar eclipse

Orbits in the Solar System

\because The earth and moon cast shadows
*When the moon's shadow falls on the earth: Solar eclipse

Picture of the Moon's shadow on earth during a solar eclipse

Orbits in the Solar System

* So why don't we have eclipses every month at full and new moon?

*The plane of the moon's orbit around the earth is tilted relative to the plane of the earth's orbit around the sun

