Announcements

\therefore You should see a polling session active if you are using the REEF app. Make sure you are signed in

* I have two iClickers to loan out. First come, first served. For today's lecture only
* Added after class: I agree with you, the display you see of the reading and homework assignments is terrible. No wonder so many of you didn't see the reading due today. I'll give everyone an extension to Saturday, February 11th at 5 pm . That's the Saturday before the midterm - you should complete the assignment by then to study for the exam, too.

Gravity
 Recap from last time

: The force that holds you onto the Earth, the moon moving in orbit around the earth, the planets moving in their orbits around the sun, is Gravity

Gravity
 Recap from last time

* The force that holds you onto the Earth, the moon moving in orbit around the earth, the planets moving in their orbits around the sun, is Gravity

Force from gravity:

- Force of M1 on M2 and M2 on M1 (Newton's 3rd law)
- stronger for smaller d
- stronger for larger M1 and/or M2

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{~s}^{2}\right)
$$

Fun with Gravity
 Recap from last time

* Gravity can be used to weigh stuff we can't put on a scale, like stars and planets

$$
\frac{d^{3}}{P^{2}}=\frac{G M}{(2 \pi)^{2}}
$$

\% We can even use it to weigh stuff we can't see, and prove that it is there
\div A neat example: finding planets around other stars

Finding Planets Around Other Stars Recap from last time

Why do we need gravity to do this?

* Even the most nearby stars are very far away
* Planets are much closer to their stars than the nearest stars are to us
* Angular-size distance relation: the angular separations we measure between the stars and their planets are tiny. Even something as big as a solar system is only a tiny angular size.
* Like being in San Francisco and trying to see the head of a pin 15 meters away from a grapefruit in Washington, DC

Finding Planets Around Other Stars Recap from last time

\% So this is not easy:

- planets around other stars are much fainter than their stars
- they are also very, very close to their stars, so very difficult to identify the faint planet light

Center of Mass and Orbits

Recap from last time

Newton's 3rd Law: if something (like a moon) is in orbit around something more massive (like a planet), the massive object feels a force, too.

Two objects (two stars, the earth and the moon, a star and a planet) orbit their
Center of Mass (CM). Mgirl Mboy same orbital peric ${ }_{\mathrm{F}_{\text {girl }} \rightarrow \text { boy }}$

star 1 mass $2 M$

star
mass M

Center of Mass and Orbits

Recap from last time
Kepler's 1st Law: planets orbit in ellipses with the sun at one focus.

- The Center of Mass is what is really at the focus.

star 1 mass 2M

star
star 2 mass M
star 2 mass M

Newton's Version of Kepler's 3rd Law

$$
\frac{\mathrm{d}^{3}}{\mathrm{P}^{2}}=\frac{\mathrm{G}\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)}{(2 \pi)^{2}}
$$

This is the more exact version.
If $M_{1} \gg M_{2}$ then this can be simplified to the equation we derived earlier in class:

$$
\frac{d^{3}}{P^{2}}=\frac{G M}{(2 \pi)^{2}}
$$

$\mathrm{d}=$ distance to the Center of Mass of the orbit. If $M_{1} \gg M_{2}$ then d is just the distance between M_{1} and M_{2}.

star 2 mass M

Newton's Version of Kepler's 3rd Law

$$
\frac{d^{3}}{P^{2}}=\frac{G\left(M_{1}+M_{2}\right)}{(2 \pi)^{2}} \quad \text { This is the more exact version. }
$$

If $M_{1} \gg M_{2}$ then this can be simplified to the equation we derived earlier in class: $\frac{d^{3}}{P^{2}}=\frac{G M}{(2 \pi)^{2}}$
$d=$ distance to the Center of Mass of the orbit. If $M_{1} \gg M_{2}$ then d is the distance between
M_{1} and M_{2}.
This is an important tool for how we learn about other solar systems:

1. Observe the motion of the star around the CM of the orbit
2. If we see the star move, even a little bit, we've found a planet!
3. The star's orbital period we measure is the same as the orbital period of the planet around the CM of the orbit, the planet's "year"

Gravitational Tugs

The motions are tiny: 0.001 arcseconds, just too tiny to measure from the ground.

- The Sun's motion around the solar system's center of mass depends on tugs from all the planets.
- Astronomers around other stars that measured this motion could determine the masses and orbits of all the planets. Gaia satellite is making this measurement now!

Surface Gravity and Weight

* The earth's surface gravity \mathbf{g} : acceleration you feel at the surface of the earth, pulls you toward the ground (actually, to the center of the earth, but the ground is in the way)
$\% \mathbf{g}$ is an acceleration, but it is an important one so it gets its own letter
Gravity: $\quad F_{\text {earth } \rightarrow \text { me }}=G M_{m e} M_{\text {earth }}$ R^{2} earth

The force of the earth's gravitational pull on me $\mathrm{F}_{\text {earth } \rightarrow \mathrm{me}}=\mathrm{Ma}=\mathrm{M}_{\mathrm{me}} \mathbf{g}$
$=$ my mass x acceleration from Earth's gravitational pull

Surface Gravity and Weight

* The earth's surface gravity \mathbf{g} : acceleration you feel at the surface of the earth, pulls you toward the ground Gravity: $\quad F_{\text {earth } \rightarrow \text { me }}=G M_{m e} M_{\text {earth }}$

R^{2} earth

The force of the earth's gravitational pull on me

$$
\mathrm{F}_{\mathrm{earth} \rightarrow \mathrm{me}}=\mathrm{Ma}=\mathrm{M}_{\mathrm{me}} \mathbf{g}
$$

$M_{m e} \mathbf{g}=\frac{G M_{\text {me }} M_{\text {earth }}}{R^{2}{ }_{\text {earth }}}$
M/me $\mathbf{g}=\mathrm{G}$ M/me $M_{\text {earth }}$
R^{2} earth
$\mathbf{g}=G M_{\text {earth }}$
R^{2} earth
Doesn't depend on my mass

Force, Mass and Weight

* Your mass: amount of stuff in you
- same anywhere in the universe
* Your weight: Force pushing up on your mass due to Earth's surface gravity
$F_{\text {earth } \rightarrow \text { me }}$
* My mass: 68 kg
* Acceleration of earth's gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$
* Force: $668 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$, my weight

Force, Mass and Weight

Jupiter has a different mass and radius than earth
$\mathbf{a}_{\text {Gravity, Jupiter }}=\frac{G M_{\text {Jupiter }}}{R^{2}{ }_{\text {Jupiter }}}$
$M_{\text {Jupiter }}=2 \times 10^{27} \mathrm{~kg}$
R^{2} Jupiter $=7 \times 10^{7} \mathrm{~m}$
a Gravity, Jupiter $=27 \mathrm{~m} / \mathrm{s}^{2}$
Compare g, acceleration due to Earths gravity: $9.8 \mathrm{~m} / \mathrm{s}^{2}$
You would experience a greater acceleration from Jupiter's gravity

You would weigh more on Jupiter
Radius of

Moon has weaker gravity: you weigh less on the moon

Force, Mass and Weight

* Blob of dense stuff: more local mass so gravity acceleration is larger locally

Gravity: $\quad F_{\text {earth } \rightarrow \text { me }}=G M_{\text {me }} M_{\text {earth }}$ R^{2} earth

Force, Mass and Weight

\longrightarrow Posizion

Force, Mass and Weight

 Recap from last week* Weightlessness: if you jump off the building (wearing your parachute, of course):
- you still have mass x acceleration = "weight"
* better description: free-fall
- accelerating freely due to force of gravity

Mass, Weight, Force

"Felix Baumgartner, Daredevil"
Red Bull "Stratos"
A balloon to 24 miles above the Earth, then jump

Mass, Weight, Force

What happens to Felix's velocity as he drops?

Mass, Weight, Force

What happens to Felix's velocity as he drops?
Felix accelerates
Does his acceleration change as he falls, starting at 24 miles above the surface of the earth?

Mass, Weight, Force

Does his acceleration change as he falls, starting at 24 miles above the surface of the earth?

$$
\mathbf{g}=\frac{G M_{\text {earth }}}{d^{2}}
$$

Radius of the earth: ~ 4000 miles
Distance from the surface of the earth when Felix jumped:
24 miles
Distance from the center of the earth when Felix jumped: 4024 miles
$4000^{2}=16$ million $4024^{2}=16.2$ million
1% in the denominator of the acceleration equation. A tiny change.

Mass, Weight, Force

Does his acceleration change as he falls, starting at 24 miles above the surface of the earth?

$$
\mathbf{g}=\frac{G M_{\text {earth }}}{d^{2}}
$$

Polling question:
Radius of the earth: ~ 4000 miles Felix stepped on a bathroom scale Distance from the surface of the ϵ the morning of his jump, and it read 24 miles 190 lbs.
Distance from the center of the ec

4024 miles
$4000^{2}=16$ million $4024^{2}=16.2$ million
1% in the denominator of the acceleration equation. A tiny change.

If he had a scale in his capsule, would it read:

A 190 lbs
B a little bit less than 190 lbs
C a little bit more than 190 lbs
D you can't tell until he jumps

Mass, Weight, Force

Does his acceleration change as he falls, starting at 24 miles above the surface of the earth?

$$
\mathbf{g}=\frac{G M_{\text {earth }}}{d^{2}} \quad \text { Polling question: }
$$

Radius of the earth: ~ 4000 milesFelix stepped on a bathroom scale Distance from the surface of thethe morning of his jump, and it read 24 miles 190 lbs.
Distance from the center of the 4024 miles

If he had a scale in his capsule, would it read:
$4000^{2}=16$ million $4024^{2}=16.2$ million

A 190 lbs
1% in the denominator of the fol B a little bit less than 190 lbs equation. Tiny change in Force C a little bit more than 190 lbs
D you can't tell until he jumps

Mass, Weight, Force

If Felix sat on a scale in his capsule, it would read about the same as on earth.

What would felix have to do to go into orbit after jumping out of his capsule?

From last time: Orbits and Circular Motion

* To get the velocity for an object in a circular orbit, combine: Acceleration required to keep an object in circular motion: $\frac{v^{2}}{d}$ with acceleration from Gravity $=\frac{G M}{d^{2}}$

$$
\begin{aligned}
& \frac{v^{2}}{d}=\frac{G M}{d^{2}} \\
& v=\sqrt{\frac{G M}{d}}
\end{aligned}
$$

$\mathrm{v}=$ speed for an object in stable circular motion around mass M at distance d

Balloon vs. Rocket

Rocket starts out vertical, moving away from earth due to force (thrust) generated by the engine.
Later the rocket turns so it gets horizontal acceleration to reach high enough velocity for circular orbit.

Balloon vs. Rocket

Rocket starts out vertical, moving away from earth due to force (thrust) generated by the engine.
Later the rocket turns so it gets horizontal acceleration to reach high enough velocity for circular orbit.

Balloon vs. Rocket

Flight to Orbit

$h=100$ miles

Staging

Energy: Kinds of Energy

Kinetic energy $=$ energy of motion: $\frac{m v^{2}}{2}$
Potential energy $=$ stored energy
Gravitational potential energy $=-\frac{G M_{1} M_{2}}{d}$ Energy stored by working against a gravitational force

Notice resemblance to the equation for gravitational force:

$$
F=\frac{G M_{1} M_{2}}{d^{2}}
$$

Kinds of Energy

Kinetic energy $=$ energy of motion: $\frac{m v^{2}}{2}$ Gravitational potential energy $=\frac{-G M_{1} M_{2}}{d}$

$$
\text { Energy units: } \mathrm{kg} \mathrm{~m}^{2} / \mathrm{s}^{2} \text { (Joules) }
$$

Other kinds of energy:
Chemical potential: energy stored in chemical bonds

Thermal: kinetic energy due to random motions of particles

Radiative: light

Energy

In an isolated system: Energy is conserved sum of all the energy is a constant value

Energy can change form: gravitational potential \rightarrow kinetic radiative \rightarrow thermal or be exchanged between objects

Energy

In an isolated system: Energy is conserved sum of all the energy is a constant value

Examples of closed, isolated systems (includes all interacting objects):

Earth and pendulum
A planet or planets orbiting a star

Conservation of Energy: Examples

A swinging pendulum: each swing reaches the same height

$$
\text { Total Energy } E_{\text {total }}=E_{\text {kinetic }}+\mathrm{E}_{\text {grav potential }}=\text { Constant }
$$

At top of swing, $v=0$ and d is at largest value as the ball turns around:

$$
\begin{gathered}
E_{\text {kinetic }}=\frac{m v^{2}}{2}=0 \\
E_{\text {grav potential }}=\frac{-G M_{1} M_{2}}{d}
\end{gathered}
$$

$\mathrm{E}_{\text {grav potential }}=\mathrm{E}_{\text {total }}$, largest possible value
At bottom of swing,
$\mathrm{v}=$ largest value, $\mathrm{d}=$ smallest value
$E_{\text {kinetic }}=\frac{m v^{2}}{2}$ largest value
$\mathrm{E}_{\text {grav potential }}=$ minimum, ball is at its smallest distance from earth

Conservation of Energy and Orbits

Total Energy $=\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {grav potential }}=$ Constant

Kepler's 2nd Law: Planets sweep out equal area in equal time
Remember: planet must be moving fastest when closest to the sun in order to sweep out equal area when the triangle legs are small.

Conservation of Energy and Orbits

Total Energy $=$ Ekinetic $+\mathrm{E}_{\text {grav potential }}=$ Constant
Kepler's 2nd Law: Planets sweep out equal area in equal time
Remember: planet must be moving fastest when closest to the sun in order to sweep out equal area when triangle legs are small.

At perihelion: smallest distance
$E_{\text {grav potential }}=-\frac{G M_{1} M_{2}}{d}$ is smallest (a big negative number) Closest Largest distance

$$
E_{\text {kinetic }}=\frac{m v^{2}}{2} \text { is largest }
$$

At aphelion: largest distance
$E_{\text {grav potential }}=-\frac{G M_{1} M_{2}}{d}$ is largest (least negative)
$E_{\text {kinetic }}=\frac{m v^{2}}{2}$ is smallest

Escape Speed

Kinetic Energy + Gravitational Potential Energy = 0 for an orbit that just barely has a large enough velocity to escape the gravitational pull of a planet (or sun, etc.)

$$
\begin{gathered}
\begin{array}{c}
\text { KE } \\
\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GM} \mathrm{~m}}{\mathrm{R}}\right)=0 \\
\\
\mathrm{v}=\mathbf{= s c a p e} \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
\end{array}=.
\end{gathered}
$$

Chapter 3.8 in the book tells you that formula, we can see where it comes from

Conservation of Energy and Orbits

Total Energy $=\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {grav potential }}=$ Constant
Orbits are defined by the total energy of the object in orbit.
Bound Orbit: closed ellipse, object stays with the thing it is orbiting
Kinetic Energy + Potential Energy <0
Kinetic Energy $\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)$

Gravitational
 Potential Energy $\left(-\frac{\mathrm{GM}}{\mathrm{R}}\right)$

Conservation of Energy and Orbits

Total Energy $=\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {grav potential }}=$ Constant

Orbits are defined by the total energy of the object in orbit.
Bound Orbit: closed ellipse, object stays with the thing it is orbiting
Kinetic Energy + Potential Energy <0
$\begin{aligned} & \text { Kinetic } \\ & \text { Energy }\end{aligned}\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GM} \mathrm{m}}{\mathrm{R}}\right)<0$
Potential Energy

Conservation of Energy and Orbits

Total Energy $=\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {grav potential }}=$ Constant

Orbits are defined by the total energy of the object in orbit.
Bound Orbit: closed ellipse, object stays with the thing it is orbiting Kinetic Energy + Potential Energy <0

Kinetic Energy

$$
\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GM} \mathrm{~m}}{\mathrm{R}}\right)<0 \quad \text { Potential Energy } \mathrm{KE}+\mathrm{PE}>0
$$

$$
\left(\frac{\operatorname{hn}^{2}}{2}\right)<\left(\frac{\mathrm{GM} \mathrm{n}}{\mathrm{n}}\right)
$$

$$
\frac{\mathrm{v}^{2}}{2}<\frac{\mathrm{GM}}{\mathrm{R}}
$$

$$
\mathrm{v}^{2}<\frac{2 \mathrm{GM}}{\mathrm{R}}
$$

$$
\mathrm{v}<\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
$$

Escape Speed

Kinetic Energy + Potential Energy = 0 for an orbit that is just barely unbound:

$$
\begin{gathered}
\text { KE } \\
\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GM} \mathrm{~m}}{\mathrm{R}}\right)<0
\end{gathered}
$$

If Kinetic Energy + Potential Energy <0
Bound Orbit: closed ellipse, object stays with the thing it is orbiting

$$
\mathrm{v}<\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
$$

Kinetic Energy + Potential Energy $=0$ for an orbit that is just barely unbound:

$$
\left.\begin{array}{c}
\mathrm{KE} \\
\left(\frac{\mathrm{~m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GE}}{\mathrm{R} ~ \mathrm{~m}}\right. \\
\mathrm{R}
\end{array}\right)=0
$$

$$
\mathrm{v}=\overline{\bar{s}} \text { cape } \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
$$

Energy and Orbits

$$
V_{\text {escape }}=\sqrt{\frac{2 G \mathrm{G}}{\mathrm{~d}}}
$$

escape speed for an object at distance d from mass M

Question:

You are building a rocket to send the next rover to Mars. If the cost of the rocket depends on its escape speed from the Earth, where should you build the rocket?

A Earth
B the International Space Station

Energy and Orbits

$V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}$
escape speed for an object at distance d from mass M

Question:
You are building a rocket to send the next rover to Mars.
If the cost of the rocket depends on its escape speed from the Earth, where should you build the rocket?

A Earth
B the International Space Station

From last time: Orbits and Circular Motion

- Combine: Acceleration required to keep an object in circular motion: $\frac{v^{2}}{d}$ with acceleration from Gravity $=\frac{G M}{d^{2}}$

$$
\begin{aligned}
& \frac{v^{2}}{d}=\frac{G M}{d^{2}} \\
& v=\sqrt{\frac{G M}{d}}
\end{aligned}
$$

$\mathrm{v}=$ speed for an object in stable circular motion around mass M at distance d

For an orbit, larger $\mathrm{d}=$ smaller v

Energy and Orbits

$$
\begin{gathered}
v=\sqrt{\frac{G M}{d}} \\
\text { vescape }=\sqrt{\frac{2 G M}{d}}
\end{gathered}
$$

speed for an object in stable circular motion around mass M at distance d
escape speed for an object at distance d from mass M

For an object in orbit at d, increase v by $\sqrt{ } 2$ and it will leave its orbit and escape.

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}} \quad \begin{aligned}
& \text { speed for an object in stable circular } \\
& \text { motion around mass } M \text { at distance } d
\end{aligned}
$$

$V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}$
escape speed for an object at distance d from mass M
You are in orbit, with speed v at distance d from earth.

You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v . But you run but of fuel before you increase v by $\sqrt{ } 2$.

Do you escape from earth? A yes
B no

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}} \quad \begin{aligned}
& \text { speed for an object in stable circular } \\
& \text { motion around mass } M \text { at distance } d
\end{aligned}
$$

$$
V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}
$$

escape speed for an object at distance d from mass M
You are in orbit, with speed v at distance d from earth.

You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v . But you run but of fuel before you increase v by $\sqrt{ } 2$.

Do you escape from earth? A yes
B no

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}} \quad \begin{aligned}
& \text { speed for an object in stable circular } \\
& \text { motion around mass } M \text { at distance } d
\end{aligned}
$$

$$
V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}
$$

You are in orbit, with speed v at distance d from earth.
You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v. But you run out of fuel before you increase v by $\sqrt{ } 2$.

Your new distance d from the earth is:
A bigger
B smaller
escape speed for an object at distance d from mass M

C stays the same

Escape Speed

Kinetic Energy + Potential Energy = 0 for an orbit that is just barely unbound:

$$
\begin{array}{r}
\begin{array}{c}
\text { KE } \\
\left.\begin{array}{c}
\left(\frac{\mathrm{m} \mathrm{v}^{2}}{2}\right)+\left(-\frac{\mathrm{GE} \mathrm{~m}}{\mathrm{R}}\right)=0 \\
\mathrm{v}
\end{array}\right)=\mathrm{=} \text { escape } \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
\end{array}
\end{array}
$$

Bound Orbit: closed ellipse, object stays with the thing it is orbiting Kinetic Energy + Potential Energy <0

$$
\mathrm{v}<\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
$$

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}}
$$

$V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}$
speed for an object in stable circular motion around mass M at distance d
escape speed for an object at distance d from mass M

You are in orbit, with speed v at distance d from earth.
You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v. But you run
out of fuel before you increase v by $\sqrt{ } 2$. accelerate to increase v . But you run
out of fuel before you increase v by $\sqrt{ } 2$.

Your new distance d from the earth is: A bigger
B smaller
C stays the same

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}} \quad \begin{aligned}
& \text { speed for an object in stable circular } \\
& \text { motion around mass } M \text { at distance } d
\end{aligned}
$$

$$
V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}
$$

escape speed for an object at distance d from mass M
You are in orbit, with speed v at distance d from earth.
You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v . But you run out of fuel before you increase v by $\sqrt{ } 2$.

After the rocket stops accelerating, your new velocity v is:
A bigger
B smaller
C the same

Energy and Orbits

$$
v=\sqrt{\frac{G M}{d}} \quad \begin{aligned}
& \text { speed for an object in stable circular } \\
& \text { motion around mass } M \text { at distance } d
\end{aligned}
$$

$$
V_{\text {escape }}=\sqrt{\frac{2 G M}{d}}
$$

You are in orbit, with speed v at distance d from earth.
You turn on the rocket engine, point in the direction you are going in orbit and accelerate to increase v. But you run out of fuel before you increase v by $\sqrt{ } 2$.

After the rocket stops accelerating, your
After the rocket s
new velocity v is:
A bigger
B smaller
C the same
escape speed for an object at distance d from mass M

Angular Momentum

Momentum: mass x velocity change in momentum requires force

Angular momentum: mass x velocity x radius
The angular momentum of an isolated system is conserved.
So is linear momentum, mxv

Angular Momentum

Momentum: mass x velocity change in momentum requires force

Angular momentum: mass x velocity x radius
The angular momentum of an isolated system is conserved.
So is linear momentum, mxv

iClicker question:

If this is a closed system, what happens to the speed v as I make the string length r shorter?

A Stays constant, velocity is conserved B Slower
C Faster

Angular Momentum

Momentum: mass x velocity change in momentum requires force

Angular momentum: mass x velocity x radius
The angular momentum of an isolated system is conserved. Just like linear momentum.

iClicker question:

If this is a closed system, what happens to the speed v as I make the string length r shorter?

A Stays constant, velocity is conserved B Slower
C Faster

Angular Momentum and Orbits

Kepler's 2nd Law: Planets sweep out equal area in equal time
Angular momentum: mass x velocity x radius
Assume the planet mass doesn't change:
At perihelion: smallest distance (radius)
v must be largest

At aphelion: largest distance v must be smallest

Angular Momentum and Orbits

Kepler's 2nd Law: Planets sweep out equal area in equal time

At perihelion: smallest distance v must be largest

At aphelion: largest distance v must be smallest
We came to the same conclusion thinking about energy:

$$
E_{\text {grav potential }}=-\frac{G M_{1} M_{2}}{d}
$$

$$
E_{\text {kinetic }}=\frac{m v^{2}}{2}
$$

At perihelion, d is smallest so potential energy is smallest, kinetic energy must be largest -> velocity is largest

Angular Momentum

Galaxies and the solar system form when clouds of stuff, mostly hydrogen, collapse due to their own gravitational force

The clouds are very large. As they collapse, they become smaller. Conserve angular momentum \rightarrow radius goes down, so v must go up. Gas orbits faster, "spins up", becomes flat, disk-like.

Angular Momentum and Galaxies

