Astronomy 2 Winter 2017 Midterm Useful formulae, unit conversion, and constants

Relevant Formulae

$$
\begin{aligned}
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& \frac{\text { angular size }}{360^{\circ}}=\frac{\text { physical size }}{2 \pi \times \text { distance }}
\end{aligned}
$$

Kepler's third law for our Solar System, orbit periond P in years and

$$
A^{3}=P^{2}
$$ radius (semi-major axis, average distance from the sun) of the orbit A in years

$\mathrm{C}=2 \pi \mathrm{~d}$ Circumfrence C of a circle with radius d
$\mathrm{F}=$ ma Newton's law relating force F , mass m and acceleration a $F_{g}=\frac{G M m}{r^{2}}$ gravitational force F_{g} between masses M, m at distance r from each other GM surface gravity; acceleration a due to the gravitational force from $a=\frac{a}{R^{2}} \quad$ mass M at distance R from the center Newton's version of Kepler's 3rd law for a small object in orbit around $P^{2}=\frac{4 \pi^{2}}{G M} A^{3}$ an object of mass M. Orbit period P in seconds and average radius A in meters for the units of G given on the formula sheet. You can ignore the mass of the small object.
momentum $=\mathrm{mv}$
$\mathrm{v}_{\text {escape }}=\sqrt{\frac{2 G M}{R}}$ Escape velocity at distance d from object of mass M
$\mathrm{v}_{\text {circ }}=\sqrt{\frac{G M}{R}}$ velocity of an object in a circular orbit around an object of mass M at distance distance d

$$
\lambda_{\text {peak }}=\frac{2.9 \times 10^{6} \mathrm{~nm} \mathrm{~K}}{\mathrm{~T}}
$$

$E=h f$ photon energy E for frequency f
$E=\frac{h c}{\lambda}$ photon energy E for for wavelenth λ
$\frac{v}{c}=\frac{\lambda_{\text {shift }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}$ Doppler shift

Units and Constants

$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$
$\mathrm{c}=3 \times 10^{5} \frac{\mathrm{~km}}{\mathrm{~s}}$
$M_{\text {Sun }}=2 \times 10^{30} \mathrm{~kg}$
$M_{\text {Earth }}=6 \times 10^{24} \mathrm{~kg}$
$R_{\text {Earth }}=6,400 \mathrm{~km}$
$M_{\text {Moon }}=7 \times 10^{22} \mathrm{~kg}$
Distance from the moon to the Earth: $384,000 \mathrm{~km}$ $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ (acceleration due to gravity on Earth)
$G=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}}$ (Gravitational constant)
3.14×10^{7} seconds per year
1 light year $=9.46 \times 10^{12} \mathrm{~km}$
$h=6.626 \times 10^{-34} \mathrm{Js}$

