
Homework 2 Astro 111 - Order of Magnitude

1) Do the Twist. The Earth is thought to have formed by accreting planetesimals of mass
m � M⊕. Assume planetesimals collide with the planet completely inelastically and from random
directions. Take the impact velocity to be vi ≈ fvorb, where vorb ≈ 30 km s−1 is the orbital velocity
of the Earth around the Sun, and f ≈ 1/2 characterizes the orbital eccentricities and inclinations
of the planetesimals. Further assume planetesimals to have a single size r and mass m. Estimate r
such that the nascent Earth spins at the correct rate. Provide both symbolic and numerical answers.

This is a random walk problem. Each planetesimal brings the growing Earth angular momentum
∆L. After N = M⊕/mp impacts, the newly formed Earth has a net angular momentum L =

N1/2∆L. The
√
N scaling of the total L is important. If this doesn’t make sense, look up a

random walk. We want to reproduce the angular momentum of Earth today, L⊕ = Iω, where
I ≈ 2

5M⊕R
2
⊕ is the moment of inertia of a uniform sphere and ω = 2π/(1 day) is the rotational

frequency of the Earth.
What about ∆L? We want to approximate the average change in the magnitude of L, < ∆L >.

Each planetesimal brings ∆L = mpvib, where b is the impact parameter, or lever arm, of the
collision. Based on the cross-section of Earth, let’s approximate b ∼ 2

3R⊕. Is this consistent with
the fact that Earth must grow from these planetesimals? At constant density, if the mass doubles,
the radius changes by 21/3 ∼ 1.25, or only an additional 25%, so we can safely neglect Earth’s
radius evolution as it grows. However, we can’t neglect the 3D geometry of the problem, and the

fact that ~L and ~∆L are, in fact, vector quantities. Taking this into account, the average change in
the magnitude of L,

< ∆L >≈ 1√
3

∆L =
1√
3
mpvi < b >≈ 1√

3

(
2

3

)
mpviR⊕ (1)

Put in terms of N = M⊕/mp,

∆L ≈ 0.4M⊕N
−1viR⊕. (2)

We can relate this back to the total L to solve for N .

L⊕ =
2

5
M⊕R

2
⊕ω = N1/2(0.4M⊕N

−1viR⊕) (3)

Simplifying,
M⊕R

2
⊕ω = N−1/2M⊕viR⊕ (4)

or

N1/2 =
vi
R⊕ω

=⇒ N =

(
vi
R⊕ω

)2

(5)

Numerically,

N =

(
1.5× 106 cm/s

6× 108 cm · 7× 10−5 s−1

)2

≈ 1300 (6)

With their number, we know their mass, mp = M⊕
N . So mp = 6×1027g

1300 ≈ 4.6 × 1024 g. These same
planetesimals each occupy a fraction 1/N of the Earth’s volume, so

R3
p ≈ N−1R3

⊕ =⇒ Rp ≈ N−1/3R⊕ ≈ (1300)−1/3 × 6× 108cm ≈ 5.5× 107cm (7)
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2) Round rocks. How large must an asteroid be before its self-gravity makes it round?

In class, we calculated how high the highest mountain on Earth could be. Let’s use that same
approach. Rocks can sustain a pressure P ∼ 2× 108 N/m2. So we set P = ρgh. Let’s say h < Ra

defines roundness.

P = ρ

(
GMa

R2
a

)
Ra =

GMaρ

Ra
(8)

but Ma = 4
3πR

3
aρ, so

P = G

(
4

3
πR3

aρ

)
ρR−1

a =
4

3
πGR2

aρ
2 =⇒ Ra =

(
3P

4πGρ2

)1/2

(9)

Numerically,

Ra =

 3× 2× 108 N/m2

4π × 6× 10−11 m3

kg·s2

(
3000 kg

m3

)2


1/2

≈ 300 km (10)
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3) Food Power.

A. Would the energy of all the calories you have consumed as food be enough to eject you from
the solar system? To escape from the solar system you would need to escape from the Earth, then
escape from the Sun.

A 20yr old has lived for about 7000 days, eating about 2000 kcal a day. In Joules, this is about
6 × 1010J . In contrast, the gravitational binding energy per kilogram of an object on the surface
of the earth is

Ue

m
= G

Me

r
≈ 5× 107 J/kg (11)

and relative to the sun (at earth’s distance)

Utotal

m
≈ U�

m
= G

M�
r
≈ 109 J/kg (12)

Thus for an approximately 75kg (165 lbs) person, the food they have consumed is more than enough
energy to escape the earth (4× 109 J)—and borderline/just-about-enough to escape from the solar
system (7× 1010 J).

B. NASA pays about $20,000 per kilogram to get rockets away from Earth. For comparison, 1kW
hr=3.6× 106 J costs about 15 cents and 1 gal gas ∼ 1× 108 J costs about $ 1.50. Is NASA wasting
our money by sending rockets away from the Earth?

From part ‘A,’ we see that about 108J are required per kilogram to escape the earth. Using the
conversions given in the problem, this translates to about $2 of electricity; or about $1 of gasoline.
Comparing this to $20, 000 from NASA—it would seem that something is amiss! What are we
not considering? We’ll get to the answer in the next question, but think about this: if you were
standing on a metal platform, and you kept lighting matches and holding them below the platform
(to produce thrust), how long would it take to make it to space?

C. There are about 1000 kcal in a bacon double cheeseburger, if that was being perfectly converted
to thrust, at what rate would you have to eat them to maintain escape velocity near earth’s surface?

This is basic projectiles stuff. Remember that the definition of power is work over time, i.e.
P = ∆E

t . Near the surface of the earth, the work done is the change in potential energy, i.e.
∆E = mg∆h; thus:

P =
∆E

t
=
mg∆h

t
= mg

∆h

t
= mg × v (13)

Or in other terms, power is force times velocity, where the force required is to resist gravity (and
thus maintain a constant velocity). The escape velocity is found by equating kinetic energy to
potential energy

1

2
mv2 = G

Mm

r
→ v =

√
2GM

r
=
√

2gr (14)

Where we have substituted the acceleration of gravity at the surface of the earth. Plugging this
back into equation 16, we see that

P = m
√

2rg3/2 (15)
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Thus for a 75 kg person, the power required is something like 107J/s ≈ 2400 kcal/s, or two and a
half bacon double cheeseburgers per second.

Getting back to part ‘B,’ this is the amount of energy that would need to be perfectly converted
to thrust per second. Using energy at a rate less than this, will be insufficient to escape the earth,
no matter the net energy used. So if you’re trying to propel yourself using a single match.... you’re
out of luck, no matter the amount of energy used. This is why it costs NASA so much money to get
things into space. An amount of energy only a factor of 10 less than the entire amount of energy
you have consumed in your life, needs to be converted to thrust on the scale of an hour. That’s no
easy task.

Keep in mind, if you are constantly exerting a sufficient force to resist gravity, you can escape
at any velocity. The smaller the velocity you choose, however, the longer you have to exert the
force—and the more energy you will use. In actuality, the space shuttle exerts a much larger
force to maintain a large acceleration, gradually increasing its velocity to a little bit below escape
velocity–required for circular orbit. Thus the true force would be larger, and the average velocity
a good deal smaller.
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4) Asteroid Rotation. For many asteroids, we can’t tell whether they are a single, solid “rock”
or a self-gravitating “rubble pile” (See Figure 1). We’re going to examine an asteroid’s lightcurve
to see if we can derive any constraints. Asteroids exhibit time-varying brightness due to their
asymmetric shapes. As they spin, they present a different size reflecting surface between the sun
and our telescopes. (I like to think of spinning a potato on its axis, and imagining how much light
reflects back to me from its surface...)

A. The asteroid 2867 Steins’ lightcurve is attached (Figure 2). What is its rotation period?

The lightcurve modulates based on the asteroid’s non-spherical shape. It repeats with ∼ 1
4 day

peroid.

B. Steins orbits the sun in a relatively circular orbit at about 2 AU from the sun. A typical asteroid
has an albedo, or reflectivity of about 0.3. At our closest approach to Steins we make a measurement
of the flux coming from the asteroid to be about 2× 10−12 erg s−1 cm−2. What is its radius?

The solar flux at 2 AU is

F =
L�

4πd2
=

4× 1033 erg/ s

4π(2 AU)2
= 3.5× 105 s−1 cm−2 (16)

The cross-section of the asteroid is πR2
a and it reflects with an efficiency of 0.3, so the total reflected

light is

La = 0.3πR2
a

L�
4πd2

sun-asteroid

. (17)

By the time it reaches Earth, the flux is La/4πd
2
a-E:

F =
0.3πR2

a

4πd2
asteroid-Earth

L�
4πd2

sun-asteroid

= 2× 10−12 erg s−1 cm−2 (18)

Solving for Ra, I get 2.6× 105 cm = 2.6 km

C. Can Steins be a rubble pile, or must it be a solid body? Given the size you derived what is the
critical rotation rate?

The key here is to imagine a pebble on the asteroid’s surface. Does the gravitational force hold
it down, or does the centrifugal force throw it off?

agrav =
f

m
=
GMa

R2
a

. (19)

With ρ = 2 g/ cm3, I get agrav = 0.14 cm/ s2.
The centrifugal force is

acent = Ω2Ra ≈ 0.022 cm/ s2. (20)
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So gravity could certainly hold together a loose pile of rocks at this rotation rate. The critical rate
is when acent = agrav, corresponding to

Ω2 =
GMa

R3
a

=⇒ Ω ≈ 7× 10−4 s−1 (21)

or a rotational period of about 22 minutes.

Figure 1. Different conceptions of asteroid makeup. Some asteroids are monolithic
rocks, case (a), while others are agglomerates of loose rocks and dust, case (b).

Figure 2. Asteroid 2867 Steins lightcurve.
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5) Exoplanets.

A. Estimate the magnitude of the RV for a planet of radius Rp, mass Mp in a circular orbit of
radius a and inclination i ... around a star of mass Ms. What would be the RV of the sun due to
the earth (looking in the orbital plane)? Due to jupiter?

Assume circular motion about a center of mass which is a distance a from the planet (m); and
the total separation between the planet and the star (M) is r. For a circular orbit, the centripetal
force is due to gravity:

G
mM

r2
=
Mv2

r − a
(22)

The stars mass is in the R.H.S. because we are looking for its velocity. Using the center of mass
equation, we can find that d = m

m+M r, and thus

vRV =

√
G

r

(
m2

m+M

)
(23)

The velocity apparent to the observer at an angle i (where i = 0 is looking along the plane of the
orbit) is then

vRV =

√
G

r

(
m2

m+M

)
cos i (24)

For the sun: M� ≈ 2 × 1033g, and the earth has Me ≈ 5 × 1027g at a radius Re ≈ 1013cm,
jupiter: MJ ≈ 2× 1030g at RJ ≈ 8× 1013cm. Therefore RV’s (with G ≈ 6.7× 10−8cgs) are about
Ve ≈ 10cm/s ≈ 0.1mph; VJ ≈ 1300cm/s ≈ 30mph

B. Estimate the percent drop in luminosity at peak transit.

This is just geometry. If the area of the star (πR2
?) is covered by the entire area of the planet

(πR2
p), the luminosity will drop by the ratio of the square of their radii:

∆L =
R2

p

R2
?

(25)

E.g., for the sun (w/ radius R� ≈ 7 × 1010cm), the earth (Re ≈ 6 × 108cm) would cause an
approximately 0.01% drop in luminosity. You could get a similar result accounting for eccentricity
by instead using quantitative versions of Kepler’s laws for elliptical motion.
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C. What is the probability that you could view the planet by the transit method? The probability
is simply that of the planet crossing in front of its parent star—from your perspective at some
inclination i. Clearly if the angle between your line of sight and the plane of the orbit (again, i)
is 0, you will see the transit, if the angle is π/2 you will not. The critical angle ic (in which the
C.O.M. of the planet barely grazes the top of the star) is determined by geometry:

sin ic =
R�
a

(26)

Where a is the distance between the planet and the star. The probability that a randomly oriented
system is within this angle is 2ic/π:

Ptransit =
2 sin−1

(
R�
a

)
π

≈ 2R�
aπ

(27)

For the earth-sun system, this probability would be about 0.4%.

D. Consider a transit survey which looks at a fixed 10 square degrees of the sky, with a sensitivity
of 1ppm for stars of apparent magnitude 12 and brighter. How many planets could such a survey
detect?

The first step is determining how many mag 12 and brighter stars can be seen in 10 square
degrees. Our sun is mag 12 at about 230 pc; therefore the sun fulfills this requirement if it is within
a volume of 5 × 107 pc3 of us. The milky-way has a volume of about 3 × 1011 pc3 with a total of
about 1011 stars1. Thus there are about 107 magnitude 12 or brighter stars in the sky—which in
total is about 41,000 square degrees. We can expect something vaguely like 103 such stars in the
given field of view.... phew.

From the calculation in part ‘c,’ we would be able to detect earth—and therefore presumably all
of the 3-4 inner planets in our solar system—as long as they pass in front of the host star. Lets
say half of those 103 stars have similar systems to ours, and the other half have no planets; there
would then be about 2000 viable planets, with only about 0.4% transiting.... thus about 8 planets
2.

1This assumes that the stars in the MW are distributed isotropically relative to us—which clearly isn’t the case
(the center of the galaxy has more stars). The center of the galaxy, is however, almost 10,000 pc away which is
significantly larger than the volume we’re considering, thus our assumption is (at least somewhat) valid

2The actually field-of-view of Kepler is far denser than average, increasing the number of observable main-sequence
stars by two orders of magnitude—-otherwise, our results are completely consistent with NASA predictions (about
400 earth-like planets).
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