
Thermodynamics of ideal gases

An ideal gas is a nice laboratory for understanding the thermodynamics of a fluid with a non-

trivial equation of state. In this section we shall recapitulate the conventional thermodynamics of

an ideal gas with constant heat capacity.

1. Internal energy

Using the ideal gas law the total molecular kinetic energy contained in an amount M = ρV of

the gas becomes,
1

2
Mv2 =

3

2
PV =

3

2
NkT. (1)

The factor 3 stems from the three independent translational degrees of freedom available to point-

like particles. The above formula thus expresses that there is an internal kinetic energy 1
2kT associ-

ated with each translational degree of freedom. Whereas monatomic gases like Argon have spherical

molecules and thus only the three translational degrees of freedom, diatomic gases like nitrogen

and oxygen have stick-like molecules with two extra rotational degrees of freedom orthogonally to

the bridge connecting the atoms, and multi-atomic gases like carbon dioxide and methane have

the three extra rotational degrees of freedom. According to the equipartition theorem of statistical

mechanics these degrees of freedom will also carry a kinetic energy 1
2kT per particle. Molecules

also possess vibrational degrees of freedom that may become excited, but we shall disregard them

here. The internal energy of N particles of an ideal gas is defined to be,

U =
β

2
NkT, (2)

where β is the number of degrees of freedom. Physically a gas may dissociate or even ionize when

heated, and thereby change its value of β, but we shall for simplicity assume that β is in fact

constant with β = 3 for monatomic, β = 5 for diatomic, and β = 6 for multiatomic gases. For

mixtures of gases the number of degrees of freedom is the molar average of the degrees of freedom

of the pure components.

1.1. Heat Capacity

Suppose that we raise the temperature of the gas by δT without changing its volume. Since no

work is performed, and since energy is conserved, the necessary amount of heat is δQ = δU = CVδT

where the constant,

CV =
β

2
Nk, (3)

is naturally called the heat capacity at constant volume.
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If instead the pressure of the gas is kept constant while the temperature is raised by δT , we must

also take into account that the volume expands by a certain amount δV and thereby performs work

on the surroundings. The necessary amount of heat is now larger by this work, δQ = δU + PδV .

Using the ideal gas law we have for constant pressure PδV = δ(PV ) = NkδT . Consequently, the

amount of heat which must be added per unit of increase in temperature at constant pressure is

CP = CV +Nk, (4)

called the heat capacity at constant pressure. It is always larger than CV because it includes the

work of expansion.

1.2. The adiabatic index

The dimensionless ratio of the heat capacities,

γ =
CP

CV
= 1 +

2

β
(5)

is for reasons that will become clear in the following called the adiabatic index. It is customary to

express the heat capacities in terms of γ rather than β,

CV =
1

γ − 1
Nk, CP =

γ

γ − 1
Nk. (6)

1.3. Entropy

When neither the volume nor the pressure are kept constant, the heat that must be added to

the system in an infinitesimal process is,

δQ = ∂U + PδV = CVδT +NkT
δV

V
. (7)

It is a mathematical fact that there exists no function, Q(T, V ), which has this expression as

differential. It may on the other hand be directly verified (by insertion) that

δS =
δQ

T
+ CV

δT

T
+Nk

δV

V
(8)

can be integrated to yield a function,

S = CV log T +Nk log V + const, (9)

called the entropy of the amount of ideal gas. Being an integral the entropy is only defined up to an

arbitrary constant. The entropy of the gas is, like its energy, an abstract quantity which cannot be

directly measured. But since both quantities depend on the measurable thermodynamic quantities

that characterize the state of the gas, we can calculate the value of energy and entropy in any state.

But why bother to do so at all?
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1.4. The two fundamental laws of thermodynamics

The reason is that the two fundamental laws of thermodynamics are formulated in terms of

the energy and the entropy. Both laws concern processes that may take place in an isolated system

which is not allowed to exchange heat with or perform work on the environment. The First Law

states that the energy is unchanged under any process in an isolated system. This implies that the

energy of an open system can only change by exchange of heat or work with the environment. We

actually used this law implicitly in deriving the heat capacities and the entropy. The Second Law

states that the entropy cannot decrease. In the real world, the entropy of an isolated system must

in fact grow. Only if all the processes taking place in the system are completely reversible at all

times, will the entropy stay constant. Reversibility is an ideal which can only be approached by very

slow quasistatic processes, consisting of infinitely many infinitesimal reversible steps. Essentially

all real-world processes are irreversible to some degree.

1.5. Isentropic processes

Any process in an open system which does not exchange heat with the environment is said to

be adiabatic. If the process is furthermore reversible, it follows that ∂Q = 0 in each infinitesimal

step, so that the ∂S = ∂Q/T = 0. The entropy must in other words stay constant in any reversible,

adiabatic process. Such a process is for this reason called isentropic. By means of the adiabatic

index we may write the entropy as,

S = CV log(TV γ−1) + const, (10)

From this it follows that

TV γ−1 = const, (11)

for any isentropic process in an ideal gas. Using the ideal gas law to eliminate V ∼ T/P , this may

be written equivalently as,

T γP 1−γ = const. (12)

Eliminating instead T ∼ PV , the isentropic condition takes its most common form,

PV γ = const. (13)

Notice that the constants are different in these three equations.

1.6. Isothermal versus isentropic bulk modulus

The bulk modulus of a strictly isothermal ideal gas with P = nkT is equal to the pressure,

KT = ρ

(
∂P

∂ρ

)
T

= P (14)
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Here the index T (in the usual thermodynamic way of writing derivatives) signals that the temper-

ature must be held constant while we differentiate. In terms of the mass density ρ the isentropic

condition may be written in any of three different ways (with three different constants),

Pρ−γ = const, Tρ1−γ = const, T γP 1−γ = const. (15)

Using the first we find the isentropic bulk modulus of an ideal gas,

KS = ρ

(
∂P

∂ρ

)
S

= γP (16)

where the index S now signals that the entropy must be held constant. The distinction between the

isothermal and isentropic bulk modulus is necessary in all materials, but for nearly incompressible

liquids there is not a great difference between KS and KT.

Among Isaac Newton’s great achievements was the first calculation of the speed of sound in

air, using essentially the ideal gas law with constant temperature. His result did not agree with

experiment, because normal sound waves oscillate so rapidly that compression and expansion are

essentially isentropic processes.

The speed of sound is

c =
√
K/ρ, (17)

such that the ratio between the isentropic and isothermal sound velocities is cS/cT =
√
γ. For air

with γ = 1.4 this amounts to an 18% error in the sound velocity. Much later in 1799, Laplace

derived the correct value for the speed of sound.

1.7. Specific quantities

In classical thermodynamics we always think of a macroscopic volume of matter with the

same thermodynamic properties throughout the volume. Volume, mass, energy, entropy, and the

specific heats are all extensive quantities, meaning that the amount of any such quantity in a

composite system is the sum of the amounts in the parts. Pressure, temperature, and density are

in contrast intensive quantities, that may not be added when a system is put together from its

parts. In continuum physics, an intensive quantity becomes a field that may vary from place to

place, whereas an extensive quantity becomes an integral over the density of the quantity. Since a

material particle with a fixed number of molecules has a fixed mass, the natural field to introduce

for an extensive quantity like the energy is the specific internal energy u = dU/dM , which is the

amount of energy per unit of mass in the neighborhood of a given point. The actual energy density

becomes dU/dV = ρu, and the total energy in a volume

U =

∫
V
ρudV. (18)
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The specific energy is an intensive quantity like temperature, pressure or density. Similarly, we

define the specific heat as the local heat capacity per unit of mass, one can write

u = cVT =
P

γ − 1
(19)

The specific energy of an ideal gas is the specific heat times the absolute temperature.

2. Sound Speeds in Different Environments

We wish to derive the sound speed in a variety of physical environments, including the ideal

gas, radiation pressure dominated plasmas, and degenerate matter. In order to explore the impli-

cations these environments, let us first derive the wave equation for a pressure/density perturbation.

2.1. Sound Wave Derivation

Consider a fluid in equilibrium (background pressure and density uniform in time and space)

obeying the continuity and momentum equations

∂ρ

∂t
+ ∇ · (ρu) = 0 (20)

∂u

∂t
+ u ·∇u = −∇P

ρ
, (21)

where ρ is the fluid density, P the pressure, and u the fluid velocity in an Eulerian coordinate

system. We can then introduce the perturbations to our initial equilibrium state

p = p0 + ∆P (22)

ρ = ρ0 + ∆ρ (23)

u = ∆u (24)

Plugging these in to equations 1 and 2, we have

∂(ρo + ∆ρ)

∂t
+ ∇ · ((ρ0 + ∆ρ)∆u) = 0

∂∆u

∂t
+ ∆u ·∇∆u = −∇(P0 + ∆P )

ρ0 + ∆ρ

Multiplying these out and keeping only terms to first order in ∆ yields

∂∆ρ

∂t
+ ρ0∇ · (∆u) = 0 (25)
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∂∆u

∂t
= −∇∆P

ρ0
= −dP

dρ

∇∆ρ

ρ0
. (26)

The last equality in equation 7 is the crucial step in this derivation. It is here that we assume

the fluid to be “barotropic,” that is, that the pressure can be expressed in terms of the density

alone, making this total derivative expansion possible. We will see later that this ostensible leap of

faith is valid in all of our cases of interest.

Finally, we can ∂/∂t(6) and −ρ∇·(7) to obtain an equation for ∆ρ, yielding

∂2∆ρ

∂t2
=

dP

dρ
∇2∆ρ. (27)

This is of course, the wave equation with solution

∆ρ = ∆ρ0e
k·x−ωt, (28)

and sound speed

c2s =
(ω
k

)2
=

dP

dρ
. (29)

Calculating dP/dρ depends on the equation of state, and is not always immediately straight-

forward. For now, let’s start with the simplest case.

2.2. The Ideal Gas

For the first case, let us consider an ideal gas which responds adiabatically to our perturbations.

Then, from the first law of thermodynamics, we have

dE =
β

2
NkdT = −PdV (30)

where β is the number of degrees of freedom for our particles. From the ideal gas law, P = NkT/V ,

so we can write
β

2
NkdT = −NkT

V
dV

=⇒ β

2
dlnT =

β

2
(dlnP + dlnV ) = −dlnV

=⇒ dlnP

dlnV
= −

(
1 +

2

β

)
=⇒ P ∝ V −

(
1+ 2

β

)
∝ ρ

(
1+ 2

β

)
,

(31)

or P = Kργ , where γ = 1 + 2/β. For a monatomic ideal gas, β = 3 and we recover the well known

γ = 5/3 polytrope. This leads to an adiabatic sound speed given by

c2s =
dP

dρ

∣∣∣∣
adi

= γKργ−1 =
γP

ρ
. (32)
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For the isothermal ideal gas, the derivation is even simpler since we can use the ideal gas law

to say

c2s =
dP

dρ

∣∣∣∣
iso

=
kT

µmp
=
P

ρ
, (33)

where µ is the mean molecular weight and mp is the proton mass. Thus, demanding an isothermal

gas is the same as setting γ equal to 1. Next, we will do the same analysis for a radiation pressure

dominated gas.

2.3. Radiation Pressure Dominated Gas

Our next step is to derive a sound speed for a radiation pressure dominated gas, where

P =
1

3
aT 4 =

E

3V
. (34)

At first glance, one may be hesitant to define a sound speed given that it is not immediately clear

how T depends on ρ. Let us again examine the case of the adiabatic gas. Again, we have

dE = 4V aT 3dT + aT 4dV = −PdV = −1

3
aT 4dV. (35)

Simplifying a bit, we obtain

− 1

3
dlnV = dlnT =

1

4
dlnP =⇒ P ∝ V − 4

3 ∝ ρ
4
3 . (36)

Through the same analysis as with the ideal adiabatic gas, we can now see that

c2s =
dP

dρ

∣∣∣∣
rad,adi

=
4P

3ρ
, (37)

which is equivalent to setting γ = 4/3. By adding the constraint that the gas responds adiabatically,

we were able to eliminate T in order to solve for a sound speed.

One might wonder how to go through the derivation for an isothermal radiative gas. However,

in order for radiation pressure to dominate, we must have an optically thick medium. This means

that the cooling timescale is not sufficiently small to keep its temperature constant, so such a setup

is not physical. In the last section, we will explore the sound speed of a degenerate gas.

2.4. The Degenerate Gas

In this case, we have a gas where the pressure is supplied from neither an ideal gas nor radiation,

but from degeneracy pressure. Here

P ∝ ρEF , (38)
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where EF is the Fermi energy. In the non-relativistic regime,

EF =
p2

2m
=

1

2m

(
h

λ

)2

, (39)

where h is Planck’s constant. When fully degenerate, the wavelength of the particle is equal to the

mean spacing between particles, so that

λ = n−
1
3 ∝ ρ

1
3 . (40)

Putting this all together we find that

P ∝ ρEF ∝ ρρ
2
3 = ρ

5
3 . (41)

Thus we find that in the non-relativistic case,

c2s =
dP

dρ

∣∣∣∣
deg,nr

=
5P

3ρ
, (42)

which is equivalent to the monatomic, adiabatic ideal gas.

For the relativistic case, we have

EF ∼ pc = c

(
h

λ

)
, (43)

which through the exact same analysis leads to

c2s =
dP

dρ

∣∣∣∣
deg,rel

=
4P

3ρ
. (44)

Thus we see that a fully degenerate, relativistic gas also obeys a γ = 4/3 polytrope.


