
Astronomy 5, Spring 2007
Problem Set #3

Due at the beginning of class, May 11.

Print your name: Please feel free to ask for hints and/or clarification. Work the problems on
this handout. If you need more space, use the back of the pages, or attach extra sheets at the
end. Please put circles around final numerical answers. Homework MUST be stapled. Questions
marked with a star are especially challenging and may involve kinds of mathematical thinking
that are unfamiliar. Starred problems will be worked as a group IN SECTION. You can work
the problems there and hand in your answers.

1. Measuring the redshifts of galaxies. Look at the figure below. The spectra of two galaxies
are shown. Light from each galaxy has been passed through an instrument called a
spectrograph. The spectrograph is essentially a prism that spreads the light out into a
rainbow, with the bluer light shown at the left end of the figure and the redder light at the
right end.
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There are lots of little bumps and wiggles in the spectra. These are called “absorption
lines” and they tell astronomers about the atoms and molecules in the outer atmospheres of
the stars in the galaxy. Notice that there are also upward spikes. These are called
“emission lines” and are caused by glowing gas in the galaxies. All of these features, both
absorption lines and emission lines, are emitted at rest wavelengths which do not
change—they are constant across the Universe. In these galaxy spectra, there are two
groups of emission lines: a group of 3 lines (which are from left to right weak, stronger, and
strongest), and then a pair of lines to the right of them which are about the same strength.
The first group of lines is due to hydrogen and nitrogen in the gas of the galaxy, while the
second pair of lines is due to sulfur.

We just said that the wavelengths of these lines are the same everywhere, but looking at
these galaxy spectra, the lines are obviously in different places. This is an example of
redshift. Galaxy A is nearby, but Galaxy B is very far away from us. Because the Universe
is expanding, Galaxy B is moving away from us quickly. For the sake of this problem, let’s
pretend that Galaxy A is very nearby, and is hardly moving away from us at all.

(a) Choose an emission line that you can clearly identify in both galaxy spectra. Mark the
line on the spectrum of Galaxy A. Using any method you like, measure the wavelength of
your chosen emission line in Galaxy A.

(b) Now find the same line in Galaxy B and mark it. Using the same method from part (a),
measure the wavelength of the emission line in Galaxy B.

(c) Because Galaxy A is nearby and only moving away from us very slowly, assume that the
wavelength you measured in (a) is the rest wavelength of the emission line, which we will
write as λrest. The wavelength you measured in (b) for Galaxy B is the “observed”
wavelength of the emission line, which we will write as λobs. Calculate the redshift, z, of
Galaxy B using your measurements from (a) and (b) and the redshift formula from Lecture
8:
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z =
λobs − λrest

λrest

(1)

(d) The redshift formula is a version of the low-speed Doppler formula (see discussion in
Lecture 8, section 3),

z =
λobs − λrest

λrest

=
v

c
(2)

where v is the speed with which the redshifted galaxy is moving away from us, and c is the
speed of light, 300,000 km/s. Calculate the speed of Galaxy B as it moves away from us.

2. Weighing the black hole at the center of the Milky Way. Objects in orbit under the
influence of gravity have to keep moving at an exact speed in order to be in a circular orbit.
The speed of the orbit (we’ll use the symbol v for velocity) is determined by the enclosed
mass, M(R), that the object is orbiting around and the distance (we’ll use R for radius) of
the object from the center of the orbit. Thus, if we can observe the speed of an orbit, v,
and the radius of the orbit, R, we can calculate the enclosed mass, M(R), that the object is
orbiting around. The relevant equation is:

M(R) =
v2R

G
(3)

where G is a constant, called the gravitational constant, and M(R), R, and v are the
enclosed mass, the orbital radius, and the velocity of the orbiting object, as described
above.
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(a) When the gravitating central body is a star, argue that the enclosed mass of a planetary
orbit is just the star’s mass. For example, argue that the enclosed mass for Earth’s orbit
around the Sun is about equal to the mass of the Sun. (Hint: in all solar systems that we
know about, the mass of the planets is negligible compared to the mass of the star.)

(b) Suppose you had measured the speeds and radii of two different orbiting objects, planet
A which orbits around star A, and planet B which orbits around star B. This means that
you know the speeds, vA and vB, and the orbital radii, RA and RB, for each orbiting planet.
You would like to compare the masses of the two stars, MA and MB. Use the equation
above to write down a ratio relationship of the form:

MA

MB

= ? (4)

using the information you have measured: vA, vB, RA, and RB.

The ratio you wrote in part (b) can be used to compare the central masses of any orbits.
For example, the Sun is orbiting the center of the Milky Way. It orbits at 26,000 ly from
the center of the galaxy at a speed of 220 km/s. Astronomers have used this information to
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measure the total mass of the Milky Way inside the Sun’s orbit: it’s about 90 billion Solar
masses. We can write this as 9 × 1010M�, where M� is the mass of the Sun.

When astronomers look into the very center of the Milky Way galaxy, the stars closest to
the center of the galaxy are moving very fast. Stars that are only 15 ly from the galaxy
center are orbiting at speeds near 1,000 km/s—almost 5 times as fast as the Sun’s orbit.
And yet, when we look at the very center of the Galaxy to see what they are orbiting
around, there is nothing there! However, the fact that the stars are orbiting fast means that
something massive must be lurking in the center of the Galaxy, even though it is invisible.
In fact, there is a massive black hole hiding there. But how massive is the black hole?

(c) Use the ratio relationship you wrote down in (b) to calculate the mass of the black hole
at the center of the Galaxy, by comparing the mass of the black hole to the total mass of
the Milky Way inside the Sun’s orbit.

3. Type Ia supernovae are very bright and can be seen to large distances. They also all have
approximately the same intrinsic luminosity. This makes them excellent “standard candles”
for measuring large distances in the Universe. Astronomer Adam Reiss and his research
team have used the known intrinsic luminosity and the observed brightness of several
hundred supernovae to measure the distances to the supernovae. Fifteen of these are given
in the table below, with distances measured in Megaparsecs (Mpc). It is also possible to
measure the redshift of the supernovae using their spectra, similar to what you did in
problem 1. Once the redshift is measured, we can calculate the speed at which the
supernova is moving away from us, using the low-speed Doppler formula from problem 1d:

z =
v

c
(5)

where z is the redshift, v is the speed at which the galaxy is moving away, and c is the
speed of light. These “recession velocities” are also given in the table.
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Name Distance Recession velocity cz
(Mpc) (km/s)

SN01V 57.8 4800
SN92ae 309.0 22500
SN92aq 474.2 30300
SN99aa 71.1 4500
SN97cn 75.5 5100
SN92al 57.5 4200
SN95ac 176.2 14700
SN98dx 211.8 15900
SN92bg 147.9 10800
SN98eg 101.4 6900
SN92bc 84.7 5400
SN98co 72.4 5100
SN93ah 110.2 8400
SN91U 110.2 9900
SN92bs 295.1 18900
Data from Reiss et al. 2007

(a) Using the attached sheet of linear graph paper (no log-log plots this time!), plot the
distance to each supernova on the x-axis and the recession velocity on the y-axis.

(b) Use a straight-edge to draw a straight line that gives a good fit to the data and goes
through the origin at (0,0). What is the slope of your line? (Hint: it will be in units of
km/s/Mpc.) This is the “Hubble constant”, which describes the rate of expansion of the
Universe.

(c) Clearly not all the supernovae lie exactly on the line. Give at least 2 reasons that this
might happen.
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4. *An example of order-of-magnitude estimates. Order of magnitude estimates are a good
way to do a quick mental calculation. They give you reasonable ball-park estimates, which
can enable you to make decisions on the fly. This can help you address real-world problems,
like estimating how much you will owe in taxes, or deciding whether or not it is worth
purchasing an insurance policy. One order of magnitude is a power of 10, so an
order-of-magnitude estimate is one that is good to a factor of ten or so. Here’s a problem
that gives practice in making order-of-magnitude estimates, with a cosmological application:

In chapter 2, figure 2.15, the textbook claims that there are more stars in the visible
Universe than grains of sand on the beaches of the Earth. Let’s see if this is reasonable:

(a) First, we’ll estimate the number of grains of sand, Ngr. That is equal to the volume of
all beaches, Vb, divided by the volume of a grain of sand, Vgr, so Ngr = Vb/Vgr.

Let’s start by estimating Vgr. About how long on a side is a grain of sand in mm?
Assuming a sand grain is a cube, what is Vgr?

Now let’s estimate Vb. Estimate the total length of coastline, Lb on the Earth. (Hint: the
circumference of the Earth is about 40,000 km.) Now estimate the typical width, Wb, and
thicknes, Tb, of a typical beach. Explain why your values for Lb, Wb, and Tb are reasonable.
Find Vb.

Roughly how many grains of sand are there on all the worlds’ beaches?

(b) Second, estimate the number of stars. Assume that the visible Universe contains 100
billion galaxies, each one containing 100 billion stars. Was the textbook right in its claim?

(c) Which of the steps of this problem do you think is the most uncertain?
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