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by electrons and hence depends on fi., which is very nearly 2 regardless of the
detailed abundances. A homogeneous composition is also typical of young stars,
since the initial stellar composition is uniform.

Another principle that enables an analytic investigation of the behaviour of
stars is the representation of a star by its two extreme points — the centre and the
surface (the surface is, of course, not a point in the strict sense of the word, but all
points on the surface are identical by the spherical symmetry assumption). The
hidden implication is that properties change monotonically between these two
points. This is certainly correct for the pressure, from equation (5.1), and also for
the temperature, by equation (5.3), since from equation (5.4), F > 0. The latter
condition is not necessarily correct in the case of strong neutrino emission, which
may turn the net ¢ negative and may eventually lead to a temperature inversion.
But we shall disregard such complications.

As a further simplification, we may represent a star by only one of the extreme
points; the centre, for example. Assuming that both P and T decrease outward
(and so must p; otherwise we would encounter the unstable situation in which
heavy material lies on top of light material, resulting in a turnover), the centre
of a star is the hottest and densest place. There, therefore, the nuclear reactions
are fastest and, since nuclear processes dictate the evolutionary pace, the centre
would be the most evolved part of the star. We should be able to learn a great deal
about the evolution of a star by considering its central point alone. This will be
the subject of Chapter 7. The surface of the star (the global stellar characteristics)
is important from an entirely different point of view — it is the only “point” whose
model-derived properties can be directly compared with observations. In some
cases, global quantities and relations between them may be obtained, as we shall
see in Chapter 7, without solving the set of structure equations.

For now, we shall consider several simple models based on the principle of a
uniform property.

5.3 Polytropic models

The first pair of stellar structure equations, (5.1)—(5.2), is linked to the second
pair, (5.3)—(5.4), by the dependence of pressure on temperature. If the pressure
were only a function of density (and composition, of course), the first pair would
be independent and could be solved separately, meaning that the hydrostatic con-
figuration would be independent of the flow of heat through it. Analytic solutions
of this form are more than a century old.

Multiplying equation (5.1) by r?/p and differentiating with respect to r, we
have
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Figure 5.1 Normalized polytropes forn = 1.5 andn = 3.

(5.14) is a constant having the dimension of length squared,

B+ DE L (5.15)
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which can be used in order to replace r by a dimensionless variable &,

r =of. (5.16)

Substituting equation (5.16) into equation (5.14), we now obtain the well-known
Lane-Emden equation of index n,
14 (280 1 g (5.17)
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subject to the boundary conditions: 6 = 1 and df /d& = 0 at§ = 0. Equation

(5.17) can be integrated starting at§ = 0; forn < 5, the solutions #(&) are found to

decrease monotonically and have a zero at a finite value § =1, which corresponds
" to the stellar radius,

R = of). (5.18)

Examples of solutions (p/ . as afunctionof r/ R), forn = 1 .Sandn = 3, are given
inFigure 5.1. As shown, the structure of a polytrope depends only on n. A polytrope
of index 3 describes a star in which the mass is strongly nonomuq.mﬁm at the centre,
whereas a polytrope of index 1.5 describes a more even mass distribution.

Table 5.1 Polytropic constants

n D_.__ E_.. x: _W____
1.0 3.290 3.14 3.14 0.233
1.5 5.991 2l 3.65 0.206
2.0 11.40 241 '435  0.185
2.5 23.41 219 5.36 0.170
3.0 54.18 2.02 6.90 0.157
3.5 152.9 1.89 9.54 0.145

The total mass M of a polytropic star is given by
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From equation (5.17) we have
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Exercise 5.2: Solve the Lane-Emden equation analytically for (a) n = 0 and (b)
n = 1 and find £, and M(R) in each case.

In later discussions we shall often resort to general relations between stellar
properties resulting from a polytropic equation of state. These follow easily from
equation (5.20). Eliminating o between equations (5.18) and (5.20), we obtain a
linear relation between the central density and the average density j,
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which is generally valid. Only the constant D,, derives from the solution of equation
(5.17) and depends on the value of n:
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Values of D, for various n can be found in Table 5.1.

Using equation (5.20) again, but now eliminating p. with the aid of equation
(5.15) and substituting o from equation (5.18), we obtain a relation between the
stellar mass and radius, which may be expressed in terms of two constants, M,
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with the upper limit derived in Exercise 2.2 (Section 2.3).

Exercise 5.3: Fora given mass M and central pressure P, which polytrope yields
a bigger star: that of index 1.5 or that of index 3?

Exercise 5.4: Capella is a binary star discovered in 1899, with a known orbital
period, which enables the determination of the mass and radius of the brighter
component: M = 8.3 x 10’ kg and R = 9.55 x 10° m. Assuming that the
star can be described by a polytrope of index 3, find the central pressure and the
central density. Check whether the central pressure satisfies inequality (2.18).

5.4 The Chandrasekhar mass

Stars that are so dense as to be dominated by the degeneracy pressure of the
electrons (discussed in Chapter 3) would be accurately described by a polytrope
of index n = 1.5, with K = K of equation (3.35). We know from observations
that such compact stars exist — they are the white dwarfs mentioned in Chapter
1, which have masses comparable to the Sun’s and radii not much larger than
the Earth’s. Their average density is thus higher than 10% kg m™3 (10° g cm™3),
about five orders of magnitude higher than the average density of the Sun. We
might learn some more about these stars by investigating the properties of this
particular polytrope. From equation (5.23), the relation between mass and radius
becomes

Rox M1, (5.29)
The density, therefore, increases as the square of the mass,
pox MR o« M?. (5.30)

Imagine now a series of such degenerate gaseous spheres with higher and higher
masses. The radii will decrease along the series and the density will increase in
proportion to M?. Eventually, the density will become so high that the degenerate
electron gas will turn to be relativistic, departing from the simple n = 1.5 poly-
trope. As the density increases (the radius tending to zero), the correct equation
of state will approach the form (3.38), still a polytrope, but of index n = 3, with
K = K,. We have seen, however, that in such a case there is only one possible so-
lution for M, uniquely determined by K. Hence our series of degenerate gaseous
spheres in hydrostatic equilibrium ends at this limiting mass. The existence of




