Physics of Planetary Interiors
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Q.1 Introduction

A fruitful way of studying the overall structure of a planet is by treating it as a collection
of atoms in equilibrium. Several different kinds of energy are involved, and the relations
between them allow the planets to be understood as a single class of object, regardless of
their composition. This treatment also makes clear the relationship between a planet and
other types of body in the Universe. Unlike for main-sequence stars, the composition may
range from being solid to almost completely gaseous. The treatment here gives the essen-
tial physics; greater detail about the physics of the interiors of planets has been given by
Cole (1984, 1986).
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Q.2 Applying the Virial Theorem

The total energy of the body is the sum of the kinetic and potential energy contribu-
tions, the former being due to the translational motion of the particles of which it consists
and the latter to the interactions between them. A central relationship between the kinetic
and potential energies of a group of particles in an equilibrium configuration is expressed
by the virial theorem (Appendix D). Writi ng E, for the total translational kinetic energy and
E, for the total potential energy, the virial theorem states that

2E, =-E, Q1)

For planets, the particles are atoms, composed of positively charged nuclei and negatively
charged electrons. This means that the kinetic and potential energies can be described in
terms of the magnitudes of the electric charges, the particle masses and the total mass, MP,
and the radius, R, of the planet as a whole. It will be shown that thermal energy plays a
negligible role in considering the equilibrium, so that planets can essentially be regarded

as ‘cold bodies’,
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Q.3 Energies Involved

We now specify explicitly the nature of the kinetic and potential energies. For the relatively
low temperatures that exist in planets, as compared to those in stars, the kinetic energy
can be supposed to come entirely from the motion of the electrons, with the motions of the
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positive nuclei negligible by comparison. Consider a hydrogen atom. Relative to the centre
of mass, the momenta of the proton and electron have equal magnitude, p. Since kinetic
energy is p/(2m), it is clear that the kinetic energy of the proton can be neglected because of
its relatively high mass. The potential energy has two contributions, one due to electrostat:
ics and the other due to gravity. It is required to express these va rious energies in terms of
the mass and radius of the body and its composition.

Q.3.1 Kinetic (Degeneracy) Energy

We consider a planetary body of mass M, composed of Np atoms. If m,, is the average mass
of the constituent atoms, then

Np=—" @2

Each atom will have Z extranuclear electrons giving ZN,, electrons in the body. Electrons
are fermions (Section K.1) and so obey the Pauli Exclusion Principle of all having a dif-
ferent quantum mechanical state. The number of such states in the body is then equal
numerically to the number of electrons there. If the volume of the planet is V}, then the
volume available to each electron in the body is

_ 4nRy
" ZN, 3ZN,

Assuming that the ‘cell’ occupied by the electron is spherical, its radius, d, is given by the

expression
3y 1/3 1/3 1/3
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The electron kinetic energy is composed of two parts. The first part is the motion
of the electron within its cell. The second part is the kinetic energy of motion of the
cell, as a result of the atom moving due to its thermal energy; we show later that this
kinetic energy is negligible in comparison with the first. The kinetic energy can thenbe
expressed in terms of the dimensions of the cell alone. This energy is independent of
the temperature and so is called degenerate. In Section K.2, an estimate of the degener-
ate energy was found from the Heisenberg Uncertainty Principle. Here, we use another
approach.

The kinetic energy of the electron is written E, = p2/(2m,), where p is the momentur
and m, = 9109 x 10-* kg is the mass of the electron. In quantum mechanics, momentum s
related to the electron de Broglie wavelength (Section 1.2.2), 4, by the relationship

ph=h

where h = 6.626 x 10-*] s is the Planck constant. Considering the electron w ith a wavelike

nature within an enclosure of maximum extent equal to the diameter of its cell, 24, then
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FIGURE Q.1

The longest standing wave within a sphere of diameter 2d.

its lowest energy state will be when it exists as a standing wave, as shown in Figure Q.1,
which has a wavelength of 4d. This gives

2 2
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The degenerate energy for the whole body is thus
Ex = EkZN, (Q.5)
Combining Equations Q.2 through Q.4 with Equation Q.5 gives
Ex =7k Mﬂ: ;7511 (Q.6)
my °Rp
with
Yk = 3;;0 =1.506x10* kg m* s~

More precise theory gives yy = 2.31 x 10-% kg2/> m* 52, a value that we shall use hereafter.

At this point, we can confirm that we do not have to take thermal energy into account.
For the Earth, taken as consisting of silicon with Z = 14 and m,, = 4.6 x10-* kg, the value of
E, is about 1.48 x 103 . If the planet had the specific heat capacity of silicon, 700 ] kg™ K,
then it would have to be at an average temperature of about 3.6 x 10° K for the thermal
energy to equal that due to the electrons.

Q.3.2 Electrostatic Energy

The probiem of summing the contributions of all electrons and nuclei to the electrostatic
energy is rather complicated, but we can appeal to an approximate argument for our pres-
ent purpose. Under the density conditions of normal planets, the speeds of the charges
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are non-relativistic, so the interaction is adequately described by electrostatics. The elec-
trostatic energy for a single cell, E,, is written, to a good approximation, as the interaction
of the two charges, one positive, Ze, and the other negative, —, separated by the size of a
cell. Then
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where
¢ is the electronic charge
g, is the permittivity of free space (8.854 x 102 F m™)
2 is a numerical constant close to unity

The total electrostatic energy is given by summing over all the cells: E.=E.N; Z, thatis,

Z-};Z? Vl-i’,-".? 22 _ M%n7:ﬂ
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Ve = € —2307x10%® kgm®s™
4me,

We set a = 1 although a precise calculation gives a = 09.

Q.3.3 Gravitational Energy

The gravitational energy E, is readily calculated. With bas a numerical constant of order
unity,

~—h GM '2 = ’“”112

E, =1
5 R R

Q9

The value of b will depend on the distribution of mass within the body, but a typical value
is 0.9 giving 7, =bG =60 X 10 m? kg s>

Q.3.4 Energies Combined

The kinetic energy has the single contribution (Equation Q.6). The total potential energy
is the sum of the expressions in Equations Q.8 and QY. Explicitly, the virial expression
(Equation Q.1) becomes

M;""'"‘Zﬁ"'% B M}q}.f;%z?'f'j Mf,
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which is rearranged to become a relation between R, and M,:

Rp  2yx Mil'” 2Yk ZH? .

The combinations of constants on the right-hand side are

Ye _499%10°m™ and -2 =130x107 kg2 m"

2yx 2y

It is seen from Equation Q.10 that for small masses the first term on the right-hand side is
dominant so that M!3/R;, = constant. This is the normal relationship between mass and
radius for a body at uniform density, which would be true for a small body of uniform
composition in the absence of compression effects. On the other hand, for very large
masses, the second term on the right-hand side of Equation Q.10 becomes dominant, and
the different relation M,'°R; = constant then applies. The radius now decreases with
increasing mass.

The plot of R, against M is shown in Figure Q.2. The upper curve is for a pure hydrogen
composition (m, = 1.673 x 10¥ kg, Z = 1), while the lower curve is for a pure iron com-
position (m, = 9.28 x 1072 kg, Z = 26). It is seen that there is a maximum radius in each
curve corresponding to a particular mass. The radius increases at first with mass but then
decreases as the compression of the material increases with increasing gravitational force
to more than compensate for the extra material.

Radius against mass for a degenerate body
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FIGURE Q.2
The radius-mass relationship for bodies made of hydrogen and of iron. According to compositions, various
solar-system bodies fall between the two curves.




