Exoplanets: Why it is Hard to Find Them?

- Planets are typically 10⁶ to 10¹⁰ times fainter than their parent star
- Astronomically speaking, they are very close to their parent star
- Angle of 0.05 arcsec at 20 parsecs, for 1 AU planet
- Due to the wave nature of light, observations are diffraction-limited
 - Minimum angle that can be discerned
 - θ (radians) = 1.22 λ (cm) / D (cm)
 - •For 500 nm light, 2.5 m telescope, θ =0.05 arcsec (No problem!)
 - •Earth's atmosphere limits θ =0.5 arcsec, 10X worse
 - •At these short wavelengths, planets are faint Figure
 - •Still have to deal with the 10⁶-10¹⁰ faintness
 - "Direct observations" are incredibly difficult

Fig. 3. Top: generalized Lomb-Scargle periodogram of the radial-velocity measurements for both HD 63765 (*left*) and HD 104067 (*right*). *Middle*: radial-velocity measurements as a function of Julian Date obtained with CORALIE (blue and orange dots) and HARPS (red dots). *Bottom*: HARPS' only phase-folded radial velocities. The best Keplerian, one-planet-solution is displayed as a dark curve whose corresponding orbital elements are listed in Table 2.

RV mass determinations over time

RV, main players

- HARPS (European, Southern Hemisphere)
- Keck (US, Hawaii)
- SOPHIE (France)
- HARPS North (Europe/US, Canary Islands)
- APF, Mt. Hamilton
- ESPRESSO, 2016, VLT

Spectra for O - G stars (left) and G - M stars (right)

Faster Stellar Rotation Leads to Broader Lines Harder to see small wavelength shifts Limits Doppler RV searches to mid F and later Average **Stellar** Rotational Velocities Class V(km/s) 05 190 200 BO **B5** 210 **A**0 190 160 A5 95 FO 25 F5 12 G0

Stars that are richer in heavy elements more commonly have **giant planets**

LETTER

An abundance of small exoplanets around stars with a wide range of metallicities

Lars A. Buchhave^{1,2}, David W. Latham³, Anders Johansen⁴, Martin Bizzarro², Guillermo Torres³, Jason F. Rowe⁵, Natalie M. Batalha⁶, William J. Borucki⁷, Erik Brugamyer⁸, Caroline Caldwell⁸, Stephen T. Bryson⁷, David R. Ciardi⁹, William D. Cochran⁸, Michael Endl⁸, Gilbert A. Esquerdo³, Eric B. Ford¹⁰, John C. Geary³, Ronald L. Gilliland¹¹, Terese Hansen¹, Howard Isaacson¹², John B. Laird¹³, Philip W. Lucas¹⁴, Geoffrey W. Marcy¹², Jon A. Morse¹⁵, Paul Robertson⁸, Avi Shporer^{16,17}, Robert P. Stefanik³, Martin Still¹⁸ & Samuel N. Quinn³

Generic Stellar Noise

Light Curve of OGLE-2005-BLG-390

ESO PR Photo 03b/06 (January 25, 2006)

