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Brightness

= 100 planets have now been
seen to transit their parent
stars Time
= 94 “hot Jupiters” o
" 4 “hot Neptunes”
= 2 “super Earths”

Doppler Shift due to
= Combination of planet radius Stellar Wobble
and mass yield density -->
composition
=Strong bias towards finding e e

mass/large planets on short-
period orbits




There is an incredibly diversity of worlds

= \We can also characterize these planets, not just find them
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The Big Questions and How We Try to Answer Them, |

* What is the composition of giant planets?

* What is the core mass?

* How do atmospheric abundances relate to
interior abundances?

* What is the “metallicity” and the ice/rock ratio?
* How does composition vary from Neptune-like
planets (ice giants) to Jupiter-like planets (gas
giants)?

Bulk composition comes from mass and radius—
can be observed for solar system planets and
exoplanets

Gravity field yields constraints on density profile
—achieved via solar system space missions

Atmospheric abundances are most reliably
achieved by entry probes, can also be determined
via spectroscopy, for solar system planets or
exoplanets




The Big Questions and How We Try to Answer Them, Il

* How do giant planets form?

* |s there one formation mechanism
or two?

* |If two, what are the observables
that discriminate between them?

* How does the disk environment
affect final planet properties?
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A lot of computer time and ink get used: models and models

For the solar system planets, gravity field + atmospheric abundances allow

for quantitative analysis of the core accretion process

Radial Velocity (RV) + plus transit observations allow for measurements of

planet frequency is a function of mass, which can be compared to

population synthesis models
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The Big Questions and How We Try to Answer Them, Il

* How does intense stellar insolation
affect planetary evolution?

* How good is our input physics?

* Are we missing input physics?

* Can we understand giant planets as
a class of astrophysical objects?

We can study mass vs. radius vs. time vs. insolation via transits

We can probe planetary interiors via dynamic shock experiments and via
first-principles calculations

Beyond the solar system, we can observe planets at Myr ages, Gyrs ages, at
0.01 AU and 100 AU, from Neptune-class to Brown Dwarfs



The Low-Mass Star Giant Planet Connection

Early 1960s: Discovery of fully convective

Hayashi Phase EVOLUTION OF PROTOSTARS'

By CrUsHIRO HAYASHI

) ) . o
1963: Theoretical DISCOVGFY of Brown Department of Physics, Kyoto University, Kyoto, Japan

Dwarfs by Hayashl & Nakano (1963) and Evolution of Stars of Small Masses in the Pre-Main-Sequence Stage
Kumar (1963) Chushiro Hayashi and Takenori Nakano

Department of Nuclear Science, Kyoto University, Kyoto

(Received June 12, 1963)

1966: Low, observing at 20 um, finds that THE STRUCTURE OF STARS OF VERY LOW MASS
Jupiter has an internal energy source Smrv S. Kumar*

. 9 9 NASA Goddard Space Flight Center, Institute for Space Studies, New York 27, N.Y.
(emits more 20 um flux than it receives Reacived October 20, 1962; revised November 27, 1962

from the Sun)
Observations of Venus, Jupiter, and Saturn at

220u. Frank J. Low, University of Arizona.—The

1968: Hubbard shows that neither first observations of the planets at 20 u were re-
conductive nor radiative transport can ported ‘)\ Lm\ (me{l O.’u Bull 128 184, 196‘\\
bring the observed flux throughout THERMAL STRUCTURE OF ]UPITER*
Jupiter’s interior the surface, implying the W. B. HUBBARD |

planet’s interior is warm (104 K) ﬂuid, and California Institute of Technology, Pasadena, California

: : ; 1967; revised November 24, 1967
convective, not cold and solid [Also Received August 14, 1967; revised November 24, 19

Zharkov & Trubitsyn in USSR]



Our Planetary Materials

Hydrogen and Helium

* Not really gas

* Dense H fluid transitions from
molecular to metallic state

e Strongly coupled dense H+ plasma
with mostly neutral He

Planetary Ices

* Not really ice

* Dense fluid of H,O, CH,, NH;, not
necessarily in intact molecules

Rocks

* Includes rocks (Mg/Si dominated) and
iron

* At boundary between solid and liquid

Rocky
core

10,000 km
| —

Jupiter

Liquid metallic
hydrogen

Saturn

Molecular
hydrogen




Hydrogen Phase Diagram

Fortney, Baraffe, & Militzer (2010) r
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H in fluid plasma
phase (liquid metal)

=
Plasmas is strongly a
coupled =
) A
r=e?/ak,T "
S
Plasma is
degenerate
6=T/T;
Saumon (2009)
2 T
[’ 20-30, 0 =—~0.02,
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Guillot (2005)

H atomic




Coulomb Repulsion + Degeneracy Leads to Radius nearly independent of Mass
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Shock Experiments

a)

GP

Pressure (

*Pressure-density
*Temperatures
*Conductivies
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Water Phase Diagram
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Is the ice in Neptune-
class planets solid?

= No.
= All evidence for Uranus/Neptune
indicates that their interiors are
predominantly fluid
= A fluid “sea” of partially
dissociated fluid H,0, NH;, and
CH,
= This is backed up by models of
dynamo-generated magnetic
field
= Experiments by Nellis et al. on

water and “synthetic Uranus”
mixtures
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Giant Planet Evolution: The Basic Equations

OP

9y —PY

%—T = 47Tr2p

g—f — 47r7“2,0(é—T%—§)

The same as for stars!




The Solar System’s Giant Planets

= Known precisely: Mass, Radius, Age, T ¢

= Known well: Gravity Field, Magnetic Field, 1-bar temperature,
Albedo

= Data quality scales inversely with distance, especially due to the
Galileo Orbiter, Galileo Entry Probe, and Cassini Missions

= No planned Uranus and Neptune Orbiters




Jupiter and Saturn:
Current Interior
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Schematic View of Jupiter and Saturn
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1 bar
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Fortney, Baraffe, & Militzer (2010)



Envelope Abundances for Jupiter and Saturn
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Core Mass Estimate

Evolution of Calculations of Jupiter’s Core Mass
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Fortney & Nettelmann (2010)



The Three Temperatures

T.w=temperature of a blackbody that would emit the same bolometric
flux are the planet
This includes intrinsic flux as well as absorbed & re-radiated stellar flux

T...=Tx in the absence of stellar flux

int

Teq= Tefr in the absence of an interior energy source — set only by
absorbed flux

I.: = f(1—AL,/(167ad*)

4 4 _ 4
Teq +Tint - Tef‘f



_ 1000 §
Jupiter and Saturn: -

Fortney et al. (2011) |
Thermal Evolution '

= Cooling models reproduce Jupiter’s 300¢

current T+ reasonably well, given
uncertainties in input physics

Terr (K)

R Jupiter -
New Models

- | 0ld Models W
= Saturn is far warmer than these same 1007 Saturn "2

models predict
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Jupiter and Saturn: Inhomogeneous Evolution
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Uranus and Neptune:
Current Interior

17|§ K convecting ZObK
ar H,/He+ices "
2000 K
0.1 Mbar convecting ices

stably stratified
ices + rocks
8000 K

rocks/
8 Mbar

Uranus Neptune
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Uncertainties in Understanding the
Interiors of Uranus and Neptune
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0.4 0.6
Radius (r/R)




Uranus & Neptune: Dramatically revised high-pressure
water EOS has an even larger impact than new atmospheres
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For the first time, Neptune models match measured T ¢
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Gravity fields of both planets also matched (constrains current structure)



Juno at Jupiter, 2016

-
Y
Deep Space Mnvr:
711210 10110/12;
821 m/sto 839 m/s
(dalg varies with launch date)

b Earth flyby
@ at 800 km:

Jupllcri Arrival: | O/ Oct, 17-18,2013
10/19/16 6

4
Launch:
8/11/11-831/11

View is from above
ecliptic plane with
ecliptic X axis to right

*Very high order gravity field and
magnetic field observations
*Microwave spectroscopy of deep
atmosphere to determine water and
ammonia abundances

Cassini at Saturn, until 2017

*Extended-extended mission (XXM) will map
gravity field before plunging into the
atmosphere



Jupiter:

Saturn:

Uranus:

Neptune:

Takeaway Message for the 4 Planets

* Cooling models modestly overestimate T at 4.5 Gyr

* Probably the current H EOS overestimates interior temperatures,
which was already suggested by lab data

* Core mass still not well constrained

* Cooling models greatly underestimate T at 4.5 Gyr
* He rain clearly still needed
* Core mass well constrained at 10-20 M,

* Cooling models greatly overestimate T 4 at 4.5 Gyr
* Tiny interior flux still not well understood

*Cooling models match T 4 at 4.5 Gyr

*One model can match gravity field and T ¢, for the
first time

*Even more significant dichotomy with Uranus

*If entire H/He and water-rich envelopes are freely
convecting, what impact on magnetic field
generation?

fio

Stanley & Bloxham (2006)



Model Atmospheres

Observables: Emitted & Scattered Light

P-T Profile
Dayside

Nightside
Terminator
Rad. Equil.?

(/Chemistry
Equilibrium
Noneq—Mixing
Ahotochemistry

Opacities
Optical

IR

uv?
Complete?

There are quite a few
ways of doing this



Model Atmosphere Grid Serves as Upper Boundary Condition

\ et I\Y\\\

Hubbard et al. (1999)

*Radiative-convective atmosphere model yields S at atmosphere bottom, or T
& P at tau=100

*Structure model gives a snapshot of log g and S, the atmosphere grid is
interpolated to yield T 4



Atmospheres: Structure, Chemistry, Effect on Evolution
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What is a “hot Jupiter”?
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Hot Jupiters: Fully Radiative Atmospheres
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0.10F
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Fortney et al. (2007)

*Shallower atmospheric T-gradient leads to slower interior cooling, and

larger radius at a given age
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*Temperature structure evaluated analytically in the gray approximation

by B. Hanson (2008) and T. Guillot (2011)



Methods for Characterizing the Atmospheres of
Transiting Planets

Secondary Eclipse

See thermal radiation and
reflected light from planet
disappear and reappear

Amplitude: ~0.1%
Time Scale: 1-5 hours

Transit Q—/ Orbital Phase Variations

See cyclical variations in
brightness of planet

Amplitude: ~0.01-0.1%
Transit depth: ~1% Time Scale: 30-100 hours
Absorption feature: ~0.01%
Time Scale: 1-5 hours
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Spectroscopy of
thermal infrared light
emitted by the planets

e Jupiter, 1969
eHD 189733b, 2008

e For most transiting planets, spectra are

Flux Planet / Flux Star (10‘3)

Swain et al. (2008)
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There is an incredibly diversity of worlds

= \We can also characterize these planets, not just find them
Mass (M,)
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Charbonneau, et al., 2007

HD 149026 b

Saturn

Jupiter

[ 1 molecular hydrogen and helium
[ liquid metallic hydrogen and helium
Il heavy element core HD 209458 b

= There is considerable diversity amongst the known
transiting planets

= Radii for planets of similar masses differ by a factor of
two, which cannot happen for pure H/He objects



Building a Model, I: Standard Cooling and Contraction

Transit Rod|us
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Miller, Fortney, & Jackson (2009)

1 M, planet with a 10 M core, at 0.05 AU from the Sun



At Gyr ages, ~1.3 R, is the largest radius of a standard cooling model
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Building a Model, II: Additional Interior Power

Transit Radius Power
5 o 29—
v 1.8 1 _ 28
— 2
3 16k 1 g
he: o
m e
:|:1.4_ 7 a
2 o
§ O
= 1.27 .
100 oAb
O 2 4 6 0 2 4 6
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Miller, Fortney, & Jackson (2009)

1 M, planet with a 10 M, core, at 0.05 AU from the Sun



Radius (R,)
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A trend is now clear:
The largest radius
planets are the hottest

Planet Radius (R))

Planet Radius (R))
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Evolution of “51 Pegasus b-like” planets

Explaining Large Radii
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Example XO-4b: Inflated, Current e = O, but not well constrained
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Explaining Large Radii: Two Recent Contenders

Thermal Tide Ohmic Dissipation
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Building a Model, II: Additional Interior Power

2.0

*Lower mass planets
more easily influenced
by a given magnitude
of power source

1.5]

*Power levels are
generally small
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0.5 I 7 parent star ~102° erg/s

Radius [R,]

*Transit radius effect
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Miller, Fortney, & Jackson (2009)
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Degeneracy: Many compositions yield the same mass/radius
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“Exo-Neptunes” Make it Even Worse
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But as we know from Uranus and Neptune, it is actually worse than this




Transits in multi-planets systems:
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In/ Out ratio

Orbital phase
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Vidal-Madjar et al. (2003): “evaporative” mass loss

*Observed for ~3 planet but likely common to
all hot Jupiters

*Probably has little effect on evolution of
Jupiter-class planets, but likely important for
smaller Neptune-class planets

Ongoing
Mass Loss




"Planet Semi-Major Axis" vs "Planet Mass" (80)
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Direct Imaging: Probes of Early Planet Evolution

Marois et al. (2010)
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“Although all these calculations may reliably represent the degenerate
cooling phase, they cannot be expected to provide accurate information on
the first 10°-108 years of evolution because of the artificiality of an initially
adiabatic, homologously contracting state.

--Stevenson (1982)
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Hubickyj, Bodenheimer, &
Lissauer implementation of 30[
the core-accretion model
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Post-Formation Entropy
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°Internal specific entropy 1
Myr after formation

*Entropy monotonically
decreases with age

°Low post-formation
entropy - small radii & low
luminosity

*Quite dependent on the
treatment of the accretion
shock!

*At higher masses, a higher
% of mass has passed
through shock
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1. Core-accretion planets are
formed with significantly
smaller entropy and radii
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If these planets did form
by core accretion, then
perhaps the “hot start”
is closer to reality

Starting in late 2011, the
Gemini Planet Imager
(GPI) on Gemini South
and SPHERE on the VLT,
specially designed
“extreme AO”
instruments, should
image 100-400
additional giant planets




Conclusions

The field is going from 4 objects to hundreds, and then
thousands

A measurement of mass-radius yields important information
about the structure of a gas giants

Mass-radius tells us less about about the structure of
Neptune-class planets, broadly defined

Work is progressing on understanding the visible atmosphere

No clear winner yet regarding what is inflating the planets,
but emerging trends will help to clarify this issue



