Astronomy 223
Planetary Physics
Winter 2011
Problem Set #1
January 26, 2011
Due: Friday, Feb. 4th

1) Derive the average equilibrium temperature, T_{eq} , for a planet with Bond albedo A_B , stellar luminosity L, semimajor axis a, and planetary orbital eccentricity e.

2) For an n-layer leaky greenhouse model, show that the surface temperature $T_s = (n+1)^{1/4}T_e$, where T_e is the emission temperature in the highest atmospheric layer.

3) Over a region where the temperature changes linearly with height and where g(r) is a constant, show that the pressure, density, scale height, and radius are related by:

$$\frac{p}{p_o} = \left(\frac{H}{H_o}\right)^{-1/\beta}$$
 and $\frac{n}{n_o} = \left(\frac{H}{H_o}\right)^{-(1+\beta)/\beta}$

where $\beta = dH/dr$ and p_0 , n_0 , and H_0 are the values at a starting distance r_0 .

4) Assume that solar radiation is absorbed only at the Earth's surface, where the albedo is 0.40. The re-radiated energy is absorbed mainly by water vapor, which we approximate as a gray absorber with a density scale height of 2 km and a total tau=2. Plot the temperature distribution with height for radiative equilibrium. What is the temperature discontinuity at the ground? What is the gradient in the air temperature just above the ground?