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Chapter 1

VERTICAL STRUCTURE
OF AN ATMOSPHERE

The simplest conceivable atmosphere is gravitationally bound (and

therefore in hydrostatic equilibrium) and spherically symmetric. For the
terrestrial planets, at least, solar radiation and the radiative properties of the
atmospheric constituents fix the first-order description of the vertical
thermal structure. An atmosphere controlled by sunlight can scarcely be
spherically symmetric. Nevertheless; it is useful to think of a mean planetary
atmosphere, with day—night and latitudinal variations occurring about the
mean. .
The vertical structure of an atmosphere is the run of pressure, temperature,
density, and chemical composition with distance from the center of the planet
(or with height above the surface). When these parameters are inferred in
part from theory or when they are tabulated as mean or representative
values, they constitute a model atmosphere.

Figure 1.1 shows the temperature profile for Earth’s atmosphere; it
serves to divide the atmosphere into different regions, where the controlling
physics and chemistry differ. .

The tropospheric temperature is governed by radiative and convective
exchange. In the stratosphere trace amounts of O are formed by sunlight;
the remarkabie ability of O to absorb both ultraviolet and infrared radiation
causes an inversion above the tropopause. The decrease in O3 production
and the increased rate of cooling to space by CO, reestablish a declining
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Fig. 1.1 Schematic temperature profile for Earth’s atmosphere showing the various regimes
defined by the temperature gradient.

temperature in the mesospbere. Finally, heating by O, photolysis and
ionization increases the thermosphere temperatures to about 1000°K. We
shall examine the main processes in these regions in turn.

1.1 Hydrostatic Equilibrium

The vertical distribution of pressure, temperature, and density in a static,
spherical atmosphere with a specified composition are governed by three
relationships. First we have hydrostatic equilibrium, in which the pressure
gradient is T

P (S )aem) = gt (LL)

Here .# is the mass of the planet and M is the mean mass of the molecules

of a mixed atmosphere, N is their number density, p is the mass density, and

F is the distance from the center of the (spherical) planet. Over height in-

tervals Ar such that Ar « r, the local acceleration of gravity g(r) = const.
For an equation of state, the perfect gas law is adequate:

p=NkT = pRT C(1.1.2)

i
1
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where R = k/M (erg/gm deg) is the gas constant mv@wo?_m.ﬁ to Eo atmo-
spheric composition. Then hydrostatic nnErdzEd gives

dp Q&\\m Mdr  gM  ~_ dz
where z is height above the surface and H the (pressure) scale height.
A third relation must fix the temperature (cf. Section 1.2). If the mean mass
and temperature are constant with height, we obtain the barometric law:

GHM .
xﬂ:.o‘ fo

p(r) = p(ro)exp| —

F—Fq

& e —
plro)exp H

(1.1.4)
Z - Zg

p{z) = p(zo)exp| — i

Thus the pressure scale height (H = kT/Mg) is an e-folding distance. In the
general case the density distribution is

dN dT  G.#M dr dar  dz

N T kT 2 ~ T H
1dT Mg dz
=74 TEr ) (1.13)

" which defines the %é&\ scale height H*. The integrated density is the number

of particles in a ooEBs above@ Specified height. It is, from (1.1.1},

2

#0 = ® N(r)dr = Msg%
_ p _
~ o = N (1.1.6)

The integrated density is often written in terms of the height of a column
under standard temperature and pressure conditions that would contain
the same number of molecules or atoms. This is the equivalent thickness in

“atmo-centimeters” (alternatively, “centimeter-atmospheres” or “centimeter-
amagat”),

£ = ,\M%Nu atm-cm (1.1.7)

where N, is Loschmidt’s number (2.687 x 10!° ¢cm™3).
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Without perfect mixing the mean mass Misa ?bomow_ of height, E @.mﬂw
high altitudes the mixing processes are likely to be less important mEan e
diffusion coefficient (Section 2.3.1) is large. .E.oznn the mHEom_uv@Mw ﬁws °
separate out diffusively, and the composition ormbm@m. as éas .ﬁwﬂocmna
photochemical reactions. The gravity gis also a ?bo:ou. of _uﬁm _”W.E
(1.1.3)]. This effect is discussed in Section 7.1; the generalized barome

equation is (7.1.19).

1.2 Radiative Equilibrium

As a starting point we will regard Em. atmospheric S.Bwnwmﬁam as m%ﬂﬂw
by radiative equilibrium. Of course, it is not, but we will add convec HM.E romm
In the ionosphere conduction becomes the dominant EnomemE for pea
transfer, and radiative equilibrium is not even a good starting approximation.

1.2.1 Equation of Radiative Transfer and Kirchhoff’s ,hmé

In a homogeneous medium (see Fig. 1.2) the EonOoE..oEman radiant
intensity I, (measured in erg/em? sec st Hz) changes along distance ds (mea-

normal to
the atmosphere

dw

incident
radiation
field

ol TS

Y

Fig. 1.2 Geometry for the equation of radiative trausfer. The element ds is always positive
and taken in the direction of propagation of a light ray.

et
-
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mcmm&u_“ro&woo:.osow.?.ovmmm:.oso:wm:.mE Hm%mmam_éﬁmﬁoﬂ%&g
amount dI, given by .

1dr
ST k4 o, 4 2.0
where 1, is the mass absorption coefficient and ¢, the mass scattering coefli-
cient (both measured in cm?/gm), and Jv 18 the emission coefficient (erg/gm
secsr Hz), The emission j, may be due in part to scattering and in part to
thermal excitation. The combination «, + o, is the extinction coefficient.
Let us look at a few special cases. IT emission and scattering back into the

original beam are negligible, as in viewing a single star against a black sky,
we have j, = 0 and

I,(s) = I,{0)e vt avs (1.2.2)

which is Lambert’s exponential absorption law.
If the source of emission includes scattering (as in the blue, sunlit sky), we_
have to specify a scattering phase function, plcos®), giving the angular

distribution of scattered radiation. Thus, if Jv 1s entirely due to scattering, the
emission term is

=Bt {1,cos @)p(cos @)d (12.3)
4x
‘where the phase function itselfis normalized so that integrated over a sphere
it is )
crrJoLE
1 Ty Y aﬂmﬁ
— = Y = )
P H pleos@)dar = - o= Hecod (124)

which is called the albedo for single scattering.

For the scattering atmosphere, then, the equation of transfer is, for radia-
tion in direction 6, ¢,

dre.¢) boraeopn
ot onpds = ~ OO = o [ [T 10,6000, ;0 ¢)sin® dor ag

(1.2.5)

At the other extreme from a scattering atmosphere is one in local thermo-
dynamic equilibrium (L'TE). It is assumed that at each point a local tempera-
ture 7' can be defined so that the emission is given by Kirchhoff’s law,

by =u,B(T) | (1.2.6)
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where the Planck function is

2hv? 1
2 mw:._:&: _ M

a2.7)

B(T)=

[

We then have, since ¢, is assumed zero, the monochromatic radiation in
LTE given by :

. dl,(8, ¢) = —1(0,¢) + BJT) (1.2.8) .
Ky ds

The LTE approximation can never be exact, and one problem is ascer-
taining how inexact it is. In complete thermodynamic equilibrium, the
temperature is everywhere the same; in the atmosphere the temperature
has a definite gradient. Also, atmospheric emission is not Planckian at any
point; the radiation field in the ultraviolet and infrared are not characteristic
of the same T Finally, the local kinetic temperature (given by the Maxwellian
distribution law) is not the same as the effective Planckian temperature
(defined by the radiation field). In a real situation we must usually treat
scattering and thermal emission together. For combined isotropic scattering

and thermal emission the transfer equation is

mm‘me _ ﬁd«. 2n (*ni2 D . , s
(, + G )pds —L+ An ,_.c ,—,\nn 1,6, ¢)sin @ d0' d¢’ + (1 — &,)B,
(1.29)

In the general case we define the source function (in the same units as f,) as
the ratio of emission coefficient to opacity

i
_ 1.2.10
S (1:2.10)

Then the general equation of transfer Js

dl
v 1.2.11
wFogpds - T (21

For isotropic scattering,

a, o
A= % 1,40 = &.J, (1.2.12)

where J, is the local mean intensity. For LTE,

#,=B(T) {1.2.13)

1.2 Radiative Equilibrium

: 1
and the combined case has nw“\._.\mnkm
Fo=J,+(1 ~&,)B, (1.2.14)
Defining a slant optical thickness from s to s as
T 1,(5,5) = % * (o + o,)p ds (1.2.15)

we can write down the formal solution to Eq. {1.2.11) as

L) = 1O 00+ [0 7,()e Ui, + apds’  (12.16)

H_H, the source Esnaoz.; wwoép we have the solution for the radiation field.
n practice, the solution is not so simple because #,(s") depends on I "

directly or on B,(T) (which in turn depend i iati
S e pends on the heating from the radiation

1.22 Monochromatic Radiative Equilibrium

Ina @_mﬁa;mq.m:moa atmosphere in which height z is measured upward
we measure optical depth = downward and zenith angle of the direction om,
E&.m.ﬂou flow 6 from the upward vertical. Then ds = secfdz is always
positive and the vertical optical thickness is ’

v

dt, = —(x, + o,)pdz (1.2.17)
Equation (1.2.8) for LTE conditions is then
dL,(0, ¢) :
p— = 1,(6,¢) — B,(T) (1.2.18)

where u = cos §. Integrating over a sphere we have

d
a!aﬂ?ﬁb =4n(J, — B,) (1.2.19)
where the mean intensity J, is given by (1.2.12) and the net flux across an

area parallel to the surface is

1

aF, =21 T I ()ue d O {1.220)

We may obtain an approximate solutio :
We n by the two-stream approximation
(see Fig. 1.3). Suppose that the upward radiant Exmmﬁmmw is I(u,7) = I'*(7)

Lo



8 1. Vertical Structure of an Atmosphere

-

Fig. 1.3 The two-stream approximation copsiders the radiation field to be noEﬁo%& of
two simple streams, one upward and one downward.

for 0 < u < +1 and the downward radiation field is I(p, ) = I (1) (—1 <
it < 0). Then the mean intensity at depth 7 is

L=t Ldu =30t + 1) (1.221)

and the net flux is
nF, =n(I* —1I7) (1.2.22)

i i i ity and flux, we multiply
To obtain a second relation between mean intensi
(1.2.18) by x and integrate over a sphere. With (1.2.20) and (1.2.21) we have

&H ‘ H +;‘ 58,
o, dppI* + 1) =2n [ dppI ~ 1) (1223)

or

ndl, o | (1.2.24)
3 dr, ¥

Substituting (1.2.19) for J, in this equation yields the flux equation

IF, - 3F,=—4 4B, (1.2.25)
dr,? v dr,

The concept of radiative eguilibrium means .Emﬁ the net m:.x &4030%”%
everywhere zero, with no energy lost or supplied by convection oHnwoéme
tion, Jt does not mean that the flux zfF, __:.mmnw scparate wonmgow ev %Ea:o-
is constant. Nevertheless, it 1s instructive to examine this case M o
‘chromatic radiative equilibrium (MRE). With dF /dz, = O everywhere,

equation for the thermal radiation versus t, 18

By _3p _ const (1.2.26)
dr, v

1.2 Radiative Equilibrium L 9

In applying boundary conditions we have to be careful that they do not
conflict with assumptions already introduced in the two-stream approxima-
tion. Let us suppose that the ground is a black body at temperature T,and

a cold black sky (T = 0) lies above the atmosphere. With Egs. (1.2.21) and
{(1.2.22) we can write

Jo=1"+3F, =" _1F, {1.2.27)
Then the transfer equation (1.2.19) gives
MM = 4(I* — B,y — 2F,
. =47 —B)+2F,=0 (1.2.28)
Hence the :véﬁd intensity at the ground is
I,* = B(T,) = B,(T,) + iF, (1.2.29)

where T, is the air temperature at the ground, and the downward intensity
at the top of the atmosphere is

Iy™=0=B,(T,) - iF, (1.2.30)

where T, is the air temperature at 7 = 0.
The solution tells us that, to fit an I.TE solution with the special case of
MRE, there is a discontinuity in temperature at the ground, with T,>T,,

and the air at the top approaches a value, T # 0. The radiant flux leaving
the atmosphere is

T

mlo " =nB,(To) + 5 F, = 2xB,(T,) (12:31)

or twice what an opaque black body at temperature Ty would emit.
The solution, then, from (1.2.26) and (1.2.30) is (see Fig. 1.4)

B,(t,) = B,(To)1 + 5z,) (1.2.32)
o
- F/2+
R
=
a
<
-
k| Fig. 1.4 The MRE solution for T{(r), presented as
£ B(T) vs. 1,. Note the discontinuity at the ground and
(S] the finite skin temperature at ¢ = 0.
T - F/2
9

By(To) B, (T} B,(Ty)
Thermal radiation B,
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ermal emis-

The atmospheric radiation nl,* is thus
2

i tt, =% .
EOM an:.mBou name for Ty is the Gold-Humphreys mﬁ.: temperature, or simply
skin temperature. Tt can be derived on the assumption that a <o.r:ﬁm element
in the stratosphere is heated by absorption of planctary H.mm:muo.m over ,m
hemisphere and cooled by its own radiation over a sphere. By Kirchhoff’s
law, the absorption and emission are ﬁnowozwosmﬂ as long as the same
wavelength bands are involved, which is approximately true. Since the moxa
angles are in a ratio 1:2, EEHEEEE&Wb
temperature are in the ratio 1:27 1% [cf. Q.m.hmﬁ. The principal reason .oH
deviations from this result is additional heating by solar radiation; a

prominent example is ozone heating on the Earth.

1.2.3 Local Thermodynamic Equilibrium for a Gray
Atmosphere Heated from the Ground

We are now ready to examine how the miamormsmm. of radiation governs
the temperature of an atmosphere when Emwo.mm no direct mo._E, absorption
by the atmosphere, when there is no oozaao:.os or convection, mma when
scattering can be neglected. The transfer equation (1.2.8) for LTE is

H _ _yip | (1.2.33)
K,pdz
Integrating over frequency we have
pd %BW% =~ _I+B (1.2.34)
pdz\J0 Kk,
where
" = 1.2.35
Hub Idv, m|b B, dv (1.2.35)

By integrating over a sphere and setting the net flux constant, we have,
analogously to Eq. (1.2.26),

|w% baww% uww c.w.ue
pdz\Jo

where F = Tu L dv. Inthe event k, = const (=x) the transfer equation (1.2.33) s

.tﬁ" I-B (1.2.37)
dz

1.2 Radiative Equilibrium . o . 17

and the thermal radiation is given by

dB
——=3F (1.2.38)
dt
where
dt = —xpdz (1.2.39)

Hence the gray solution is analogous to that for MRE given above,
It would seem that, with a mean absorption coefficient properly defined,

any nongray atmosphere could be treated with the gray solution. Thus
writing

dt = —{k>pdz (1.2,40)
a comparison of (1.2.36) and (1.2.38) suggests

I 1 reB, ‘
ST o (1.2.41)

where B is given by (1.2.35). This (x> is the Rosseland mean used widely in
astrophysics. The problem with it lies in the Eddington approximation. To
conserve flux, the MRE equation (1.2.19) requires J, = B, precisely. But in
LTE there is a gradual shift with depth in the frequency distribution of the
radiation, since temperature varies with depth, and J, cannot precisely equal
B, to conserve the flux in each frequency interval. But if there is approximate
equality over the spectrum, the Rosseland mean js a good approximation.
It works well for stellar atmospheres, but is not good for most terrestrial
situations Since 7 and B,(T) vary with depth, {xy cannot be treated as

constant with depth. Thus iterations are required to compute B,(T) and

{x» as functions of depth. An alternative and generally better procedure is

to put x, on the right-hand side of (1.2.26) and integrate over v. Comparison -
with (1.2.38) gives

1 e |
> == b K,F, dv (1.2.42)

which is the Chandrasekhar mean coefficient. Tts difficulty is that F, is not
known in advance of solving the problem, requiring iterations, or other
approximations.

We can now write the LTE gray-atmosphere solution and compare
numerical results with temperatures in the Earth’s. atmosphere. Equation
(1.2.38) gives a solution, similar to (1.2.32),

T) = To*(1 + %) (1.2.43)
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where T is the temperature of the upper boundary. Here the integrated
black-body intensity is . .

Bl) = m T() (1.2.44)

The total radiant flux from the Earth can be wxﬁnmmmn.a in HH,EM Mm W ﬁmﬂ
planetary emission temperature, obtained by integrating Eq. (1.2.
frequency:

’ T, =2Ty* s ~ (1.2.45)

For a rotating planet of radius R at a uniform temperature over the sphere
this temperature is related Lo the incident solar flux by

47R%¢T.* = (1 — AR F o) (1.2.46)

where A is the effective planetary albedo msm nF o is the MsoEMMW mmw.\w_..
flux. With A = 0.29 for Earth, we find T, = 255 K msm a Uo.ﬁna ENO " _umzmo
ture Tp = T,/1.19 = 215°K, which is o_o@.n to the mid-latitude :o_..w %n use
temperature. If we know the optical thickness oﬁ the mﬂBoﬂmv  vors
height, we can figure the SE@wB.ER <nﬂ.m_cw Mﬂwﬂﬂﬁwﬁ apse

iati ilibrium. An example 1s given 1n 3.
B%MMMWM%M%MW between Eoﬂ# and surface temperature can be expressed

from (1.2.29) as
T 4

I

T, +3T.*
H..OBHM + .Wﬁmw
= T*1 + w,nmv (1.2.47)

where 7, is the optical thickness at the ground. The deposition of sunfight
g

ikine the Earth is shown in Table 1.1. o
mﬁmmwmmosm {1.2.43) and (1.2.47) illustrate how high temperatures can be

attained near the ground if the infrared 7 is large and heating is from below.

TABLE 1.1 Approximate Percentage Deposition of Incident Solar Flux®

diated
bsorbed Absorbed Rera
Wmm_..nnﬁa >¢mmw_uma A mwm above from ground to
%Mon ground troposphere troposphere ) atmosphere
40 40 18 2 25

: . . 2 _ r mH.
= The solar constant outside the atmosphere is 2 omw\nww_ cm® = M.uw x 10° erg/
ived i is amount.
" em? sec; the global average heat received is one fourth t
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Heating from this combination of a transparent atmosphere in the visible,
where the sun’s energy is a maximum, and of high opacity in the infrared,
where the Earth’s Planckian curve peaks, is known as the greenhouse effect.
It has long been thought that the trapping of infrared by glass is not the
important thing in warming greenhouses. Rather, it is said, the glass roof
merely keeps the warm air from convecting away. Purists have fought a
‘steadily tosing battle to replace “greenhouse effect” with a less picturesque
term. We prefer to think of atmospheres as warming by the greenhouse effect,
even if greenhouses do not. ‘

If there is no internal heat source, the emission temperature T,, computed
from (1.2.46), will be equivalent to the measured bolometric temperature T),,
which is obtained’ by measuring the mean planetary flux from thermat
emission over all frequencies and setting it equal to ¢T,* In the case of
Jupiter and possibly other major planets. T,-= T, indicating internal genera-
tion of heat (cf. Section 1.8.3).

If an atmosphere’s thermal emission is measured only in a narrow fre-
quency interval, its intensity gives a brightness temperature Ty, defined by
1, = B,(Tp). If the atmosphere were gray, I, would be Planckian and Ty
would be the same at all frequencies and the same as T 5. The brightness

temperature of Venus in the microwave spectrum gave the first indication
of its 750°K surface (cf. Section 1.8.1).

1.3 Convection in the Troposphere

As we have seen, a gray atmosphere in radiative equilibrium approaches
a finite “skin temperature” at high altitude. This isothermal Tegion i stable
against convective circulation. At large r, however, the radiative gradient
dT/dz becomes steep (i.e., negatively large). Hence, an optically thick, gray
atmosphere can be convectively unstable at low altitudes; the temperature
distribution that radiative exchange tends to establish is then too steep to
be hydrostatically supported.

¥ an element of gas moves adiabatically, the first law of thermodynamics
requires that

CodT = —pdV (13.0)

where C, is the specific heat at constant volume ferg/em°K). If V is the
specific volume containing a gram of molecules, then the perfect gas law gives

dV =—"=dT ~—5—dp (132)
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where N, = 1/M and M is the molecular mass. Since C,=C,+ Nok
(erg/gm°K), we have the alternate thermodynamic relation

NokT 1
C,dT =—"——dp="Vdp=—dp (1.3.3)
P P
With Emﬂoﬂmﬁo.ﬁizdaﬁs, (1.1.1), the first law thus gives the E@:@m
temperature gradient,
e ————
— M o
ar__g _ _r—1eM (1.3.4)

G, 7k

where y = C,/C,. For the Earth’s troposphere this lapse rate (the ne
_the temperature gradient) is 9.8°K /km.
For saturated air the first law includes the latent heat released b

condensing:

1
C,dT = —pdV — Law,, Gwsﬁ,nm% — Ldw, (1.3.5)

where w, is the mass of saturated water per mass of air and L is the latent
heat of vaporization. The sgturation adiabatic lapse rate is then

dT g/C,

T dz T 1+ (IL/C ) awdT) (13.6)

e may be about half the dr S°K/km.
Since convection is partly moist and partly dry, the troposphere has an
average value of 6.5°K/km. This value charactetizes the static stability of
the Earth’s large-scale weather systems (see Section 22.4).

The temperature distribution in radiative-convective equilibrium is thus
simply the adiabatic curve at low altitudes, merging into the purely radiative
one at higher levels (see Fig. 1.5). Of an infinite number of parallel adiabatic
atmospheres we must select the one that emits the same upward radiant
flux as the radiative atmosphere itself. For example, curve 1 in Fig. 1.5 is
tangent to the radiative curve and would not require a temperature discon-
tinuity. But the adiabatic curve is everywhere below the radiative one and
it clearly cannot supply the radiant flux required above point A to support
the temperature there in radiative equilibrium.

A self-consistent solution is an adiabatic curve displaced to the right by
an amount such that the flux boundary condition is satisfied. The temperature
discontinuity at the ground must also be removed, since it is unstable con-
vectively. The flux given by the various adiabatic distributions is readily
computed from the formal solution to the transfer equation (1.2.16).
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ADIABATIC
CURVE | N
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m,_m 1.5 When no:a.‘mn.:o: is present the adiabatic portion of the curve not only extends to
a point where zﬁ radiative solution is convectively stable; it must also supply the thermal
radiation to sustain the profile above “B.” Point B is called the radiative-convective boundary.

Mwm tropopause, defined as the base of the first isothermal region, is just above Lhe top of the
gure.

1.4 Latitudinal Variations of the Tropopause
and Departures from Grayness

Hrn radiative-convective model with a gray atmosphere reproduces the
main features of the troposphere temperature distribution, with the radiative
skin temperature” being identified with the near-isothermal region of the
Hwowo.@m:mn. This happy state of affairs does not hold, however, when we
examine some of the finer features. Figure 1.6 shows isotherms on meridional
cross sections for the various seasons. The heavy line shows the location
of the tropopause. It is apparent from (1.2.45) and (1.2.46) that in the gray
mﬁEomﬁer. heated from below and without dynamical interchange latitu-
dinally, the tropopause would be warmer in the tropics than in the Arctic sim-
.ﬁ_w because the ma.:sm temperature is higher. In fact, the tropic tropopause
Wm Hﬂﬁmwamﬁ HM%%HHSMMNMMA .meowu whereas over the polar cap it is as low as
Why should the tropopause be lower and warmer in the Arctic? There
are several contributing factors. Quite likely the most important is the fact
Em.ﬂ the atmosphere is not only nongray but the distribution of the infrared
active gases (CO,, H,0, and Q;)} varies with latitude.



