What I know today about the Final

- Tuesday, December 10, 8 11 am, same place
- Around 80-90 multiple choice / T-F questions
- Closed book and closed note
- No smartphones allowed
- Calculators of any kind are permitted, but the math can be readily done without them
- Equation Sheet Provided
- Around 40% old stuff, 60% new stuff
- Bring a #2 pencil!
- Know your Student ID

What I know today about the Final

- Chris and Emily will proctor the Exam
- It is 35% of your quarter grade
- Review Sessions with Chris and Emily
 - Thursday Night
 - Sunday Night
- TA Discussion Sections and Office Hours will happen as planned
- Study Guide is being created
- We will provide Scantrons....
- I will be at a conference on Monday/Tuesday

Grades so far

- All HWs have been turned in
- Clicker questions very nearly done
- I will make a tentative grade breakdown based on the HWs, midterms, and clickers, and post that to MA by *Thursday*
 - You'll be able to see where you stand, pre-final

Online course evaluations

- Please do them before the final exam
- They are important to me, Chris, and Emily for feedback on how the class and discussion sections were run and structured
- Will help to improve the class next time
- When I come up for review, I get judged both on the quality of my teaching (via the evaluations) and the fraction of the evals that actually get filled out

In the News

- Comet ISON
- Had a very close approach to the Sun
- Was visible in the very early morning before closest approach
- Would have been visible after sunset after closest approach, but....
- Didn't make it!

ESA/NASA SOHO LASCO C3

Antares

M4

C/2012 S1 (ISON)

2013/11/27 12:54

For radial velocity detection: The orbital period of an unseen planet

- A. will be the same as period of the star's Doppler shift.
- B. will be much longer than the star's.
- C. will be much shorter than the star's.

For radial velocity detection: The orbital period of an unseen planet

A.will be the same as period of the star's Doppler shift.

- B. will be much longer than the star's.
- C. will be much shorter than the star's.

Real Kepler Planets: How Common Are Planets?

You must determine the properties of the planets that you are seeing, and the planets that you are missing!

Planets: Common or Rare?

- Faint M stars, which make up 70% of all stars, have about 1.5 planets with radii > 0.7 R_{Earth}, within 80 days of the star
 - Around 20-40% of M stars have have an "Earth-sized" (0.7-1.4 $\rm R_{earth}$) at a temperature range where surface liquid water could be possible

Planets: Common or Rare?

- For Sun-like stars, about 2/3 of all stars have a planet larger that 1 R_{Earth} within 85 days.
 - Around 5-10% of Sunlike stars have have an "Earth-sized" (1-2 R_{earth}) at a temperature range where surface liquid water could be possible

Planets: Common or Rare?

• For Sun-like stars, about 10-20% of star appear to have a gas giant (Jupiter-like) planet

– Such planets are mostly on 1-100 AU orbits

• True analogs of our solar system appear to not be the most common outcome of planet formation

13.4 Finding More New Worlds

Our goals for learning:

- How will we search for for additional Earthlike planets?
- How will be characterize these planets?

Transit Missions: What is after Kepler?

- After 4 years, NASA's Kepler
 Mission was crippled this summer by the loss of a "reaction wheel" (a gyroscope)
- 3 are needed to maintain precise pointing in 3 dimensions
- What can you do with only 2?

Transit Missions: What is after Kepler?

- The proposed "K2" mission would look in the ecliptic to keep constant solar photon pressure
- Could look at a field for about 83 days
- Will likely look at fewer brighter and smaller target stars
- Can find planets in orbits of 27 days, or less

Future Missions

• *NASA's TESS:* Transiting planets almost as small as Earth, with a focus only on the bright, nearby stars

Future NASA Missions

Direct Detection

Mission concept for a telescope that could take spectra of Earth-sized planets

- Determining whether Earthmass planets are really Earth-like requires direct detection.
- Missions capable of blocking enough starlight to measure the spectrum of an Earth-like planet are being planned.

What have we learned?

- How will we search for Earth-like planets?
 - Transit missions are capable of finding Earthlike planets that cross in front of their stars.
 - Radial Velocity and Astrometric missions will eventually be capable of measuring the "wobble" of a star caused by an orbiting Earth-like planet.
 - Missions for direct detection of an Earth-like planet will need to use special techniques for blocking starlight.

24.3 Life around Other Stars

- Our goals for learning:
 - What kinds of star might have habitable planets?
 - Are Earth-like planets rare or common?

What kinds of stars might have habitable planets?

Solar System

Star with mass $\frac{1}{2}M_{Sun}$

© 2014 Pearson Education, Inc.

Habitable Planets

- Definition:
 - A habitable world contains the basic necessities for life as we know it, including liquid water.
 - It does not necessarily have life.

- Star system constraints:
 - 1) Old enough to allow time for evolution (rules out high-mass stars 1%)
 - 2) Need to have stable orbits (*might* rule out binary/multiple star systems 50%)
 - 3) Size of "habitable zone": region in which a planet of the *right size* could have liquid water on its surface
- Even with these constraints, billions of stars in the Milky Way could potentially have habitable worlds.

 The more massive the star, the larger its habitable zone — and the higher probability of a planet existing in this zone — <u>all things</u> <u>being equal, which they are not!</u>

1 A.U. (Distance from Earth to Sun) 10

Finding them will be hard

- Recall our scale model solar system:
 - Looking for an Earth-like planet around a nearby star is like standing on the East Coast of the United States and looking for a pinhead on the West Coast—with a VERY bright grapefruit nearby.
 - But new technologies will allow us to search for such planets.

Elements and Habitability

Some scientists

 argue that the
 proportions of
 heavy elements
 need to be just right
 for the formation of
 habitable planets.

 If so, then Earth-like planets are restricted to a galactic habitable zone.