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ABSTRACT

Remote observing is the dominant mode of operation for both Keck Telescopes and their associated instruments.
Over 90% of all Keck observations are carried out remotely from the Keck Headquarters in Waimea, Hawaii
(located 40 kilometers from the telescopes on the summit of Mauna Kea). In addition, an increasing number of
observations are now conducted by geographically-dispersed observing teams, with some team members working
from Waimea while others collaborate from Keck remote observing facilities located in California. Such facilities
are now operational on the Santa Cruz and San Diego campuses of the University of California, and at the
California Institute of Technology in Pasadena.

This report describes our use of the X1 and VNC2 protocols for providing remote and shared graphical
displays to distributed teams of observers and observing assistants located at multiple sites. We describe the
results of tests involving both protocols, and explore the limitations and performance of each under different
regimes of network bandwidth and latency. We also examine other constraints imposed by differences in the
processing performance and bit depth of the various frame buffers used to generate these graphical displays.

Other topics covered include the use of ssh3 tunnels for securely encapsulating both X and VNC protocol
streams and the results of tests of ssh compression to improve performance under conditions of limited network
bandwidth. We also examine trade-offs between different topologies for locating VNC servers and clients when
sharing displays between multiple sites.
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1. INTRODUCTION

Over the past several years, the Internet-2 initiative has spurred significant improvements in network infrastruc-
ture throughout the U.S. As a result, many Keck telescope observing programs can now be conducted remotely
from any one of several Keck remote observing facilities located in California. Details of the motivation and
planning for those facilities and the software architecture on which they are based were discussed in several
previous reports.4–7 Key aspects of those reports are excerpted in Sections 1.4 and 1.5 below to provide the
context for the sections that follow them.

1.1. The Keck Remote Observing Model

Keck’s remote observing model was first adopted in 1996 and is based on two fundamental principles: 1) all
observing applications (including user interfaces) run on summit control computers, and 2) the displays generated
by those applications are re-directed to the remote sites from which the observers operate (See Fig. 1). This
model provides a generic method for supporting remote operation of a large variety of both optical and infrared
instruments, and ensures that all observers, regardless of the location from which they observe, run identical
versions of the observing applications.
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Figure 1. Global overview of connectivity between Santa Cruz, Mauna Kea, and Waimea

1.2. Motivation

The primary motivation for this approach is to minimize the overall level of technical and administrative support
required to maintain the operation of observing software at Keck. Under this model, only the single copy that
runs on the summit control computers needs to be maintained. As a result, it also reduces the support burden
at the remote sites, since the workstations used for remote observing only require installation and maintenance
of generic software (e.g., the X Window system and VNC). This is of particular concern, given current efforts to
reduce, consolidate, and centralize information technology support on each U.C. campus; those efforts are driven
by budget cutbacks that are a result of California’s multi-billion-dollar State budget deficits.

In addition, since different Keck instruments were developed by different institutions, there are significant
differences in the way in which they operate and in the underlying communication protocols (e.g., RPC,8 EPICS
channel access,9 MUSIC10) that they use. Some of those protocols are sensitive to packet throughput, latency,
and jitter issues that are difficult to control across wide area networks (WAN), while others pose challenges
in cases where firewalls need to be traversed. By requiring all observing software to run at the summit, these
protocol issues are confined to the summit network. This simplifies the task of remote operation in that these
WAN-related issues only need to be addressed for generic protocols, such as ssh, X and VNC.

1.3. Goals of the current effort

While the Keck remote observing model provides the advantages noted above, it often does not deliver optimal
interactive performance to all remote sites. In most cases, it delivers performance that is quite acceptable, but in
a few cases interactive response is sluggish at best. A major goal of our current and ongoing effort is to experiment
with various combinations of generic protocols to determine which ones provide the best overall performance
over the widest range of circumstances. An additional goal of this effort is to enable summit observing support
staff to monitor the operations conducted by observers from the remote sites.



1.4. Remote Observing from Keck Headquarters in Waimea

Most observations with the Keck telescopes are now carried out from one of the two remote operations rooms
located at Keck Headquarters in Waimea (see Fig. 2). The workstations in these rooms communicate with
instrument and telescope control computers at the summit via a dedicated, 45 Mbit/sec fiber link (See Fig. 1).

The observer is supported by an observing assistant (OA), who operates the telescope, and a support as-
tronomer (SA), who assists the observer in setting up and operating the instrument. During the first part of the
night, a SA is present in the remote operations room and during the latter part an on-call SA can be reached by
telephone at home. The OA is usually located at the summit, but in some cases will operate the telescope from the
same control room in Waimea from which the observer is running the instrument. A video-conferencing system
links each remote operations room in Waimea with its corresponding telescope control room at the summit.

Figure 2. Keck remote operations room in Waimea Figure 3. Santa Cruz remote observing room

1.5. The Keck Remote Observing Facilities in California

The remote observing facilities in California (see Fig. 3) are primarily targeted towards observers scheduled
for short-duration observing runs and who live within commuting distance of one of those facilities. They are
not intended to duplicate the Waimea facility nor to operate independently of it. Rather, each is an extension
of the facility in Waimea. That facility and those on the mainland are intended to operate in collaboration,
sharing resources where practical. We rely on the existing instrument support staff at Waimea and provide
video-conferencing and shared software environments so that they can most effectively support the observers at
the mainland sites.

In some cases, an observing run may be conducted by an observing team in which some of its members observe
from Waimea while others elect to observe from the mainland. If an observing team is composed of observers
from widely separated mainland sites (e.g., Santa Cruz and San Diego), then simultaneous remote operation for
multiple mainland sites may prove desirable.

A key objective of the mainland facilities is to provide observers with the flexibility to choose the observing
site that is most practical and productive for them. That choice depends on the needs of the members of their
observing team and the specific circumstances and duration of a given observing run. That objective can best
be achieved if the mainland sites are operated in close collaboration and cooperation with the Waimea facility.

2. USING X PROTOCOL TO REDIRECT DISPLAYS TO REMOTE LOCATIONS

In 1996, Keck initiated remote observing from its headquarters in Waimea. That initial implementation4 relied
exclusively on the use of the X protocol to redirect to Waimea the displays generated by observing client
applications running on the summit computers (See Fig. 4). Given the relatively high bandwidth and low
latency (under 1 millisecond) between the two sites, this scheme worked relatively well and provided comparable
interactive performance at both sites. Its main limitation was that multiple instances of a given client application
needed to be run if the display from that application was needed at both sites. In the case of single-copy
applications, their displays could be directed to one site or the other, but not simultaneously to both.
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Figure 4. Redirect displays to Waimea with X
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Figure 5. Redirect displays using X protocol

2.1. Security and tunneling

In 1997, experiments began to extend this model to include sites on the mainland5, 6 (See Fig. 5). That extension
posed two significant challenges. First, the X protocol is not secure over WANs, and for that reason, it is blocked
by most firewalls. Our solution to that problem was to encapsulate the X protocol traffic within a secure-shell
(ssh3) tunnel. This offers the added advantage of simplifying the handling of the X DISPLAY environment variable
and eliminating the need for awkward (and less secure) mechanisms such as xauth and xrsh. Instead, ssh provides
automatic mechanisms for transparently and securely redirecting the X display from the machine running the
client applications to the X server at the remote site.

2.2. Latency and bandwidth

The second challenge encountered in extending this model to the mainland is that packet round-trip times
between California and the Mauna Kea summit are over a factor of 100 longer than those between Waimea and
the summit. This significantly higher latency profoundly affects remote interactive performance in two ways: 1)
it reduces the effective bandwidth of the connection, and 2) it greatly increases the time required for X-based
operations that require multiple, sequential round-trip transactions between the X client and server.

The reduction in effective bandwidth that occurs over high latency links is a function of the default TCP
window size∗. That default typically assumes a low-latency connection (e.g., a LAN connection) and provides for
efficient transport of data in such an environment. The effective bandwidth that can be delivered over a TCP/IP
channel is set by the window size divided by the round trip time (RTT). For a default window size of 8 Kbytes
(the default under Solaris 2.7) and an RTT of 100 milliseconds (the average RTT between Mauna Kea and the
mainland), the effective bandwidth will be limited to 80 Kbytes/second, or 0.64 Mbits/second; that is well below
the 30 Mbits/second capacity of the slowest leg of the link. While higher bandwidth could be achieved by careful
tuning of the TCP parameters on the computers at each of the sites involved in remote operations, that requires
detailed coordination between systems administrators at each of these independently managed sites – something
that has so far proven difficult to achieve in practice.

∗For details, please see: http://www.psc.edu/networking/perf tune.html and http://www.web100.org/



2.3. In-stream compression

Another approach to compensating for the reduced effective bandwidth is to employ compression on the X
protocol streams sent to the remote sites. The most straightforward option for accomplishing this is to enable ssh
to provide in-stream compression (ssh -C -X ). The compression that ssh provides is not specifically optimized
for X protocol streams. Other compression schemes that are include LBX † and dxpc‡. While both of those
schemes were developed for transmitting X protocol streams across relatively low-bandwidth links, such as
analog telephone and ISDN lines, one might assume they could provide some benefit when transmitting such
streams across moderate-bandwidth high-latency links such as the one between Mauna Kea and the mainland.

Tests with dxpc yielded compression factors of 5 to 7 during startup of X-based GUIs. However, this dramatic
reduction in the volume of X protocol data transmitted yielded only a 10% reduction in GUI startup time
for client GUIs on Mauna Kea displaying to X servers in California. Similar results were obtained using ssh
with compression enabled. Packard and Gettys,11 in their extensive analysis of X Window system network
performance, evaluated the utility of compressing X protocol streams sent over high latency links and compared
the relative effectiveness of the compression provided by LBX and ssh. They concluded that when using X
protocol over links with 100 millisecond RTTs, the performance with LBX was no better than when using an ssh
tunnel with compression enabled. They also concluded that LBX solved neither the authentication nor security
problems inherent to networked distribution of X protocol streams, and concluded that LBX was an inferior
alternative to ssh. Based on the measurements they conducted, they also concluded that for high latency links
(such as the one between Mauna Kea and California), the effects of latency usually dominate those of bandwidth
during application start up.

2.4. Latency-sensitive operations prolong application startup

The long RTT (100 milliseconds) between Mauna Kea and the mainland negatively impacts any X-based graphical
operations (e.g., initial creation and display of a window, visualization of a pulldown menu, etc.) that require
multiple, sequential round-trip transactions between the client application and the X server responsible for
performing that operation. As a result, operations that complete in a fraction of second when initiated from an
X server running on a workstation in Waimea instead require several seconds when initiated from an X server
running in California. Because this sluggish performance is primarily due to the propagation delays between the
sites, increasing the effective bandwidth (by upgrading the inherent bandwidth of the link itself, by tuning of
TCP/IP parameters, or by compressing the X protocol stream) does not address this problem.

One response to this problem is to develop GUIs that minimize the use of those operations that require
repeated round-trip transactions between the summit client and the California X server (e.g., creation of pop-up
windows), or to perform these expensive operations during initial session setup and before observing commences.
For example, one of our GUIs makes extensive use of pop-up windows. We modified it to support a “remote
mode” in which it creates and then iconifies all its pop-ups during application startup. While this may take as
long as two minutes, it saves times later during observing. Provided that backing store is enabled in the X server,
a subsequent instantiation of any of these iconified pop-up windows merely de-iconifies that window, rather than
incurring the expense of recreating it. When the pop-up is dismissed, it is simply re-iconified rather than deleted.
Such iconfication and de-iconification occurs almost instantly and thus significantly improves observing efficiency.

Unfortunately, this approach is not applicable to legacy GUIs that are no longer actively maintained and which
cannot cost-effectively be modified to operate in this manner. Nor is it applicable to other legacy applications,
such as the Keck autoguider eavesdrop display, which unnecessarily makes repeated transactions with the X
server on every frame update. The unacceptably sluggish performance of such legacy applications when their
displays are redirected to California was one of the primary motivations for exploring VNC as an alternative
method for providing remote displays. VNC also enables us to share single-copy applications that cannot be
effectively shared using the X protocol by itself.

†Low Bandwidth X. For details, see http://www.tldp.org/HOWTO/LBX.html
‡Differential X Protocol Compressor. For details, see http://www.vigor.nu/dxpc



3. USING VNC PROTOCOL TO REDIRECT DISPLAYS TO REMOTE LOCATIONS

Virtual Network Computing (VNC2) is a thin-client system in which a generic VNC client (the VNC viewer,
with which the user interacts) offers remote access to a shareable virtual desktop environment provided by a
VNC server; multiple VNC viewers can be connected to a single, shared VNC server. Because VNC viewers
store no recoverable state information, they can connect and disconnect from the VNC server with no effect on
the session at the server. The VNC protocol works at the framebuffer level, and is based on a single graphics
primitive: put a rectangle of pixel data at a given x,y position. Because it works at this low level, VNC servers
and clients can be implemented for most operating systems and windowing systems.

VNC offers the potential for solving two of the most vexing problems posed by an exclusively X-based
model for remote observing: 1) the sluggish response provided by those X-based GUIs that repeatedly perform
operations sensitive to high network latency, and 2) the inability to share between sites those applications for
which only a single copy can be invoked.

3.1. Reducing the effects of network latency

The first solution is the less obvious of the two. As noted earlier, the sluggish performance observed with some
X-based GUIs (especially when first starting up) results from from the high latencies encountered with each and
every round-trip transaction that occurs between a widely-separated X client and server. Those latencies would
become negligible if both the X client and server were running on the same machine, or at least on the same
network segment. VNC makes that possible, because the VNC server (which acts as a shared, virtual X server)
is run on a computer at Mauna Kea (see Fig. 6).
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Figure 6. Re-direct displays using VNC protocol
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Figure 7. Run VNC server and viewers at summit

Thus, when an X-based GUI client on a summit control computer establishes a connection to its X server
(in this case, the VNC server), that server is on the local network and the latencies are minimal. Rather than
sending X protocol packets across the Pacific Ocean, we now send VNC protocol packets instead. If the VNC
protocol requires fewer round-trip transactions to transmit the corresponding display updates between the VNC
server on Mauna Kea and the VNC viewer in California, then the time required for GUI startup should be
significantly reduced and the responsiveness of latency-sensitive GUI operations (e.g., popping up new windows)
should be greatly increased. This is what we find in practice.

For example: suppose one uses the arrangement depicted in Fig. 5 and starts a ds9 § image display program
on the summit instrument control computer with the X display redirected to an X server in California via an

§See http://hea-www.harvard.edu/RD/ds9/



ssh tunnel with in-stream compression enabled. The application then requires between 70 to 75 seconds to
startup and complete painting the remote display. If the arrangement depicted in Fig. 6 is used instead (i.e.,
ds9’s X display is redirected to the local VNC server which relays the display updates to a VNC viewer via
a port-forwarded and compression-enabled ssh tunnel), the application starts up and completes painting the
remote display in approximately 11 seconds.

Unfortunately, while the VNC topology depicted in Fig. 6 significantly reduces the time required for ap-
plication startup, other aspects of interactive performance are significantly degraded compared to using the X
protocol topology depicted in Fig. 5. For example, when using X, iconify/de-iconify operations are nearly in-
stantaneous (because of local backing store), while when using VNC, these same operations take tens of seconds.
Similarly, when using X, ds9 zoom in/out operations on a 8K x 8K pixel image complete in 4 seconds, while
using VNC, they require 9 seconds to complete. (Such operations primarily push data in one direction and are
thus more sensitive to effective bandwidth than to network latency.) In addition, X provides superior interactive
performance in terms of scrolling the ds9 color map and using the mouse to generate projections and regions.

3.2. Security and tunneling

Like X, VNC is not sufficiently secure over WANs and requires the use of a tunnel to traverse firewalls. Unlike
the support it provides for X packets, ssh provides no built-in capability for forwarding VNC protocol packets. In
order to establish a secure tunnel between the VNC server on Mauna Kea and the VNC viewer in California, the
port-forwarding capability of ssh (ssh -L) must be used. The port-forwarding tunnel must be established before
the VNC viewer in California attempts to connect to the VNC server on Mauna Kea, and this tunnel must be
kept open for the duration of the VNC connection. Should the tunnel collapse, there may be a several-minute-
long TCP-imposed time delay before the tunnel can be re-established for that port; that would be troublesome
if it occurred during observing.

3.3. Shared environment

The most significant advantage of VNC is its ability to enable the sharing of applications between multiple sites.
This is especially important for those applications which cannot otherwise be shared. In addition, since all of
the VNC viewers connected to the same VNC server see the identical shared desktop, users at a given site can
directly observe the mouse motions and keystrokes of their colleagues at the other sites. This has proven to be
an extremely valuable capability both for training and troubleshooting.

For example, a support astronomer (SA) in Waimea might be trying to provide (via the videoconferencing
connection) advice to an astronomer on the mainland about a specific function of the instrument GUI. If that
GUI is displayed on the shared VNC virtual desktop visible at both sites, the SA can use the shared mouse to
point at various features on that GUI while describing their functionality. After providing such a brief tutorial,
the SA can then ask the astronomer to perform the desired operation and can then watch the astronomer’s
keystrokes and mouse motions/actions, to confirm that the astronomer is performing the sequence correctly.

However, the shared desktop can also be a source of confusion. If more than one user types into the shared
desktop at the same time, their respective keystrokes will be interleaved, and if both try moving their mice at
the same time, they will compete for control of the window focus. If one has not used a shared virtual desktop
before, some time is needed to become accustomed to these potential conflicts.

The VNC viewer does provide a read-only mode in which it displays the shared virtual desktop but cannot
modify it. This capability is extremely useful in the case where the remote participants simply want to watch
what is going on without risk of accidentally affecting the observations in progress.

A final advantage of VNC is that the virtual shared desktop persists on the VNC server regardless of VNC
any viewers/clients. If, for some reason, the remote participant’s computer crashes, the session on the VNC
server will remain intact and no context will be lost. Once the computer at the remote site is rebooted and the
VNC viewer restarted and reconnected to the VNC server, the remote observing should continue without any
intervention needed on the summit machine.



4. ALTERNATIVE TOPOLOGIES

Alternative topologies were explored to determine whether any offered improved performance over those depicted
in Figs. 5 and 6. One such topology, show in Fig. 7, shows considerable promise. Because it retains the use of a
VNC server running on a computer on the Mauna Kea summit, the X-based GUI clients that run on the control
computer connect to a local X server (i.e., the VNC server) and thus encounter minimal network latency; this
significantly reduces application start up time as well as the time required to create new pop-up windows. At
the same time, by running the VNC viewers on the same computer as the server, the VNC protocol packets sent
between server and viewers can flow over an extremely high-bandwidth Unix domain socket connection and not
burden the local network.¶. Alternatively, the VNC viewers can be run on another computer on the same local
network as the VNC server, and still obtain a very high-bandwidth connection.

The topology depicted in Fig. 7 has the added advantage that the VNC package need only be installed and
maintained at the summit and not at each remote site, and thus avoids one more area where software versions
could drift out of sync between sites. In addition, it avoids the complexity associated with the port-forwarding
features of ssh; while most observers are familiar with using slogin/ssh to log into a remote computer, most
are not familiar with how to forward ports from one machine to another. It also avoids the potential TCP
socket-timeout delay problem described in Sect. 3.2.

The interactive performance provided by this topology is roughly comparable to that obtained when running
the VNC viewers at the remote sites (i.e., the topology of Fig. 6). However, it provides marginally better
performance on ds9 zoom in/out operations (6.4 seconds versus 9.3 seconds). But for image display applications
such as ds9, the best interactive performance is still achieved by bypassing VNC altogether and using X protocol
to redirect the ds9 display to California (i.e., Fig. 5); in that mode, ds9 zoom in/out operations take only 4
seconds. The main penalty one incurs from using X protocol to redirect the display for ds9 is the excruciatingly
long time (72 seconds) required for application startup. Provided that the application only needs to be started
once at the beginning of the observing session, this is a small price to pay for the significantly improved interactive
performance achieved throughout the remainder of the session.

5. USING A MIX OF BOTH PROTOCOLS

Unfortunately, neither the X protocol nor the VNC protocol provides an optimal solution for all applications or
across all network paths. Accordingly, the optimal solution for a given mix of applications whose displays are
to be distributed to a particular set of remote sites will likely require a mix of both protocols. Although we are
still gathering and analyzing performance measurements, some preliminary results can be summarized here.

First, for image display applications such as ds9, the topology depicted in Fig. 5 currently appears to provide
the best interactive performance, but the worst application start up time. That topology also provides the best
interactive performance for X-based GUIs which iconify (rather than delete) any dismissed pop-up windows,
provided that: 1) all of those windows were first popped-up and then iconified at the start of the session and 2)
backing store is enabled in the X server.

Second, for those GUIs (e.g., xlris and xpose) which delete dismissed pop-up windows and recreate them anew
each time they are popped-up, the topologies depicted in Figs. 6 and 7 will usually provide better interactive
performance than the topology depicted in Fig. 5. These two topologies also provide the best performance for
applications (such as the Keck autoguider eavesdrop) which are extremely sensitive to network latency. They
also appear to provide nearly optimal performance for output-only applications such as facsum and xmet‖. Of

¶To enable VNC server to accept connections on a Unix domain socket, the default protection on the /tmp/.X11-unix/
directory (which is reset whenever the system is rebooted) must be set to enable the server to create a named socket
there; root access is required to effect that change. Otherwise, the VNC server must be started with the "-nolisten

local" option and will then only accept connections on network sockets.
‖These applications are specific to Keck: xlris is the GUI for the Low-Resolution Imaging Spectrograph (LRIS); xpose

is the exposure control GUI used by all of the Keck optical CCD systems; facsum is the Keck Facilities Summary, which
displays the current telescope and dome positions and which can be seen displayed on the leftmost screen in Fig. 2; xmet

is the status display for the Keck meteorological station.



these two topologies, the one depicted in Fig. 7 is somewhat easier to administer and requires less software to
maintain at the remote sites.

The ability to use a mix of X and VNC protocols (for redirecting the displays of a variety of applications) is
simplified by the availability of multiple display monitors at each site. As can be seen in Figs. 2 and 3, most
remote observing sites have at least 3 monitors available for the display of the various GUIs and image display
applications (e.g., ds9 ). For some instruments, two monitors may be configured to provide local desktops onto
which remote applications will be displayed directly via X-protocol (i.e., the topology of Fig. 5), while the third
monitor will be used to display the shared virtual desktop provided by the VNC server at the summit. For other
instruments, two monitors might be configured to display shared virtual desktops, and in other cases all three
monitors might be configured to operate in that mode.

It may also prove to be the case that for a given instrument, different topologies may prove optimal for
different sites. For example, while the topology of Fig. 7 appears to provide marginally better performance
than the topology of Fig. 6 for displays redirected to the mainland, the converse may prove true for displays
redirected to Waimea. If so, that difference is probably due to the much smaller network latencies between the
summit and Waimea compared to those between the summit and the mainland.∗∗

In addition to these various permutations and combinations, there are a number of other specific issues
relating to the specific frame buffer hardware and versions of X window software deployed at each of the remote
sites. These are explored in the next section.

6. ISSUES AND INTERACTIONS

6.1. X visuals

The underlying hardware of an X server constrains the colormap characteristics which it can offer. In the
X Window System these characteristics are known as visuals. Typical visuals are 8, 16, or 24 bits deep and
categorized as PseudoColor, StaticColor, and TrueColor. An X client program requires different strategies, and
therefore different code, to handle each different visual. A robust X client program should query the X server to
determine what visuals are available and (when it cannot use the default visual) choose a visual which it is best
able to use.

X programmers often have not had access to all types of X11 visuals. Consequently many X clients are
unable to run on some X servers. Fortunately it is now becoming more common for the X servers supplied by
hardware vendors to support multiple simultaneous visuals. Often it is possible to configure such X servers to
offer a particular visual as the default. Having multiple visuals available simultaneously permits advanced X
clients to choose the visual most suitable for themselves; it can also permit other X clients which do not know
how to choose between multiple visuals to obtain the most suitable visual by default.

The Xvnc server, unfortunately, is not currently able to offer multiple simultaneous visuals. Xvnc must be
started specifying a visual which will be acceptable to all of the X clients which will be on the shared virtual
desktop. This means that it is not possible for Xvnc to provide the best service to all possible clients. If some
X clients require 8-bit PseudoColor and others prefer 24-bit TrueColor, then it might be necessary to run two
different VNCservers with the two different visuals, then run pairs of vncviewer programs to display onto two
different remote sessions at each remote site.

For remote observing we use some legacy image display programs and some GUIs (developed with DataViews)
which can only operate on 8-bit PseudoColor visuals. Therefore we are typically constrained to run Xvnc with
the switch -cc 3 (to specify PseudoColor) and the switch -depth 8.

∗∗For any mainland site, the strategies discussed here cannot eliminate a perceptible delay in response to user key-
board/mouse events; even with optimal topologies, some patience will be required of remote observers.



6.2. Colormap issues

When using VNC, the vncviewer program is constantly translating the color requests suitable for the Xvnc
virtual server into color requests suitable for the real X server where the user sees the shared session. For
example, in the case of an X server with an 8-bit PseudoColor visual, an image display program can simply
update the colormap without rewriting any pixels in the frame buffer. Updating the colormap typically gives
an instantaneous change in the appearance of a displayed image on a real X server. But when this is an Xvnc
virtual server the colormap change often requires the vncviewer program to redetermine and retransmit the value
of every pixel in the display of the shared session. The recoloring consumes CPU time on the machine running
vncviewer and the retransmission consumes bandwidth between the virtual and real X servers. As a result,
whether or not the visual characteristics in the virtual and real X server match, an update in the appearance of
the image can be much slower.

The vncviewer program has numerous options which modify its use of visuals and colormaps on the real
X server. There are advantages and disadvantages to these colormap options. Some of our remote observing
sites run X servers offering 24-bit TrueColor visuals (often in combination with other simultaneously available
visuals). When vncviewer chooses a 24-bit TrueColor visual it guarantees that the colors on the real X server
will match what is expected, but the cost is the bandwidth required to transmit 24 bits for every pixel that
changes value.

Users of X servers with 8-bit PseudoColor are familiar with the “colormap flashing” that occurs when multiple
X client programs request more colors than are available. In such cases the color-greedy X clients often specify
a private color map which is used when the window manager gives focus to their windows. The vncviewer
offers the option -owncmap which attempts to choose an 8-bit PseudoColor visual for the window displaying the
shared session on the real X server. In the ideal case this option permits the VNC server and client programs to
update images by changing only the colormap. However, the private colormap for the virtual session may make
it impossible to view any other X clients on the server outside of the window with the shared session.

In the absence of the -owncmap option the vncviewer may not be able to allocate many colormap entries on
a PseudoColor X server. In that case vncviewer will choose colors which it deems to be close to the desired color,
but the results are often so different that it becomes difficult to recognize and use some GUIs.

6.3. whitepixel and blackpixel issues

Every X server reserves two contrasting values in its colormap with the designations blackpixel and whitepixel.
Typically the pixel values for whitepixel and blackpixel are chosen to be 0 and 1, but there is no guarantee which
value will be which color. Although X clients should query the server to determine these two pixel values, not
all do so.

When running via Xvnc an X client program is always dealing with at least two different X servers. One
is the Xvnc shared virtual server, and the others are each of the X servers onto which vncviewer is duplicating
the shared session. In some cases the Xvnc virtual server and the X servers where the shared session users sit
choose different pixel values for white and black. In such cases we observe that some X client programs can
cause problems such as white text on white background, or black on black. We have attempted several different
remedies to this complex situation.

The whitepixel and blackpixel values are often configurable. In a fashion that was once common among
many X servers, the Xvnc virtual server permits some control over the blackpixel and whitepixel values using
undocumented†† command line switches -whitepixel and -blackpixel. Newer X servers tend to permit somewhat
less flexibility with a command line switch -flipPixels that allows swapping of the black and white pixel values.

In some cases it may be possible to use these switches to remedy problems with the choice of whitepixel and
blackpixel on the various servers, but this is both difficult and not guaranteed to solve the problems. Whereas
the choice of the Xvnc pixel values can easily be made at the start of a virtual session, the users sitting at remote
session points may not have the administrative privileges necessary to reconfigure their X servers. Moreover, a
multi-headed X server using several different kinds of graphics cards may provide different values of blackpixel

††See http://www.realvnc.com/pipermail/vnc-list/2001-August/024147.html



and whitepixel on each of its screens. Unless all remote X servers can be configured to provide a screen where
the pixel values agree with the Xvnc virtual server, this strategy will probably fail.

Rather than struggle with variant X servers and broken X clients, a simpler strategy can usually avoid black
on black and white on white. For any X clients which exhibit this behavior, simply configure them by requesting
foreground and background colors other than white and black; e.g., white on blue, or yellow on black. Choosing
colors other than black and white comes at the price of consuming at least one more colormap entry, but it is
much quicker than determining whether there is any configuration of X servers which can avoid the problem.

6.4. Font issues

In the X Window System the fonts available to an X client program are usually supplied by the X server. In
the case of VNC, this means that the available fonts are the ones available on the machine running vncserver.
These are the same fonts that would be available to a native X server on that machine either through its own
file system or via an X font server. In general the use of fonts via VNC will be less efficient than on a native X
server because the rendered glyphs must be transmitted over the wire. The use of VNC can be an advantage
if the X clients which are to be duplicated require peculiar fonts which are not readily available at the remote
sites, but in such a case it will be necessary to guarantee that Xvnc is made aware of those fonts.

7. MEASUREMENTS OF REMOTE PERFORMANCE

Table 1 summarizes the results of timing tests conducted for each of the three topologies described in Sects. 2-4.
For each topology, measurements were made both with and without compression of the protocol stream sent over
the ssh tunnel. The ds9 image display program was used at the test case client program because it is readily
available and provides a representative range of functions to test. For comparison, the times required to perform
these functions using a ds9 run from another host on the Santa Cruz network are listed in the “local” column.

These measurements were made at times when the computers at the tunnel endpoints were otherwise idle
(as verified by running the top utility) and during times of relatively low utilization of the network link between
Mauna Kea and California (as verified by monitoring Internet traffic statistics). The control computer at the
Mauna Kea endpoint was a Sun Sparc Enterprise 450 with four 300 MHz CPUs running Solaris 2.8, ssh version
OpenSSH 3.6.1p2 and Xvnc version 3.3.3r1; it ran both the client application (i.e., ds9 ), and, where applicable,
the VNC server and viewer. The computer in Santa Cruz was a Sparcstation 10 with one 440 MHz CPU running
Solaris 2.7, ssh version OpenSSH 2.9.9p2, and Xvnc version version 3.3.3r1; in the Fig. 6 topology, it also ran
the VNC viewer. Both computers used a default TCP window size of 8192 bytes.

Test sequence local Fig. 5 yes Fig. 5 no Fig. 6 yes Fig. 6 no Fig. 7 yes Fig. 7 no
VNC viewer startup N/A N/A N/A 10.0 33.0 12.7 32.0
ds9 startup 6.6 72.0 76.0 11.0 27.5 10.6 26.2
file chooser popup 3.0 10.3 11.9 3.0 7.7 3.0 6.8
ds9 zoom in 0.7 4.0 10.2 9.0 17.0 6.5 11.5
ds9 zoom out 0.7 4.5 9.5 9.7 17.5 6.3 13.5
ds9 draw cut 0.0 0.1 3.0 4.0 10.0 4.5 13.5
ds9 make plot 1.0 4.5 9.0 7.0 10.0 4.5 12.0
stats box popup 6.9 13.0 20.0 11.7 20.0 13.8 18.5

Table 1. Response time in seconds for each topology with(yes) and without(no) compression

All measurements were made multiple times and on different days, and the results checked for consistency to
weed out any spurious measurements that might be skewed by unexpected bursts of network activity. A better
methodology for making such measurements would be to use the NIST network simulator package12 to provide
a consistently repeatable simulation of the Mauna Kea to California network link.

These measurements show that in most cases the use of in-stream compression of the protocol streams
significantly improved performance for all three topologies. This suggests that further improvement might be
achieved via more optimal tuning of TCP parameters at the endpoints of the tunnel.



8. CONCLUSION

In developing methods to provide access to interactive X-based applications from remote sites, consideration
must be given to the constraints imposed by network bandwidth and latency. While the past 6 years have seen
a twenty-fold increase in the limiting bandwidth of the link between Mauna Kea and the mainland, the latency
of that link (now 100 milliseconds) has also increased, along with the hop count (now 22). The negative effects
of that high latency can be partially mitigated by an appropriate choice of transport protocols and software
topologies. Interactive response can be optimized by combining the best features of X, VNC, and ssh.
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