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ABSTRACT

NGC 205, a close satellite of the M31 galaxy, is our nearest example of a

dwarf elliptical galaxy. Photometric and kinematic observations strongly suggest

that NGC 205 is currently undergoing tidal distortion as a result of its inter-

action with M31. Despite earlier attempts, the orbit and progenitor properties

of NGC 205 are not well known. In this paper, we present an optimized search

for these unknowns by combining a genetic algorithm with restricted N -body

simulations of the interaction. This approach, coupled with photometric and

kinematic observations as constraints, allows for an effective exploration of a 10-

dimensional parameter space. We represent the gravitational potential of M31

as a static analytic bulge-disk-halo model. NGC 205 is modeled as a static Hern-

quist potential with embedded mass-less test particles that serve as tracers of

surface brightness. We explore three distinct, initially stable configurations of

test particles: a cold rotating disk (no velocity dispersion), a warm rotating disk

(small amount of velocity dispersion), and a hot, pressure-supported spheroid

(isotropic velocity distribution with no rotation). Each of these models is able to

reproduce some, but not all, of the observed features of NGC 205. This leads us

to speculate that a rotating progenitor with substantial pressure support could

match all of the observables. Furthermore, plausible combinations of mass and

scale length for the pressure-supported spheroid model of the progenitor of NGC

205 reproduce the observed velocity dispersion profile. For all three models, we

find that NGC 205’s line-of-sight distance and proper motion are well constrained

by NGC 205’s kinematic profile and surface brightness distribution. Orbits that

best match the observables place the satellite 11± 9 kpc behind M31 moving at
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very large velocities: 300 − 500 km s−1 on primarily radial orbits. Given that

the observed radial component is only 54 km s−1, this implies a large tangential

motion for NGC 205, moving from the north-west towards the south-east, that

translates into a predicted proper motion of ∼ 0.1 mas yr−1. These results sug-

gest that NGC 205 is not associated with the stellar arc observed to the north

of M31 and to the north-east of NGC 205. Furthermore, NGC 205’s velocity

appears to be near or greater than its escape velocity, signifying that the satellite

is likely on its first M31 passage.

Subject headings: galaxies: dwarf — galaxies: kinematics and dynamics — galax-

ies: individual (NGC 205) — galaxies: interactions — methods: N -body simu-

lations — methods: numerical

1. INTRODUCTION

In the hierarchical model of galaxy formation, low mass dwarf-sized galaxies collapse and

merge to form the massive galactic structures that we observe today. Minor mergers in the

present-day Universe continue to influence the properties of stellar halos (Bullock & Johnston

2005), and perhaps the appearance of galactic disks (Gilmore et al. 2002; Abadi et al. 2003;

Yoachim & Dalcanton 2005). How this process of minor merging works in detail is not well

understood. The Local Group is a prime locale for studying minor merging events. In the

Milky Way, three satellites are undergoing tidal disruption and accretion: the Magellanic

Stream (Mathewson, Cleary, & Murray 1974; Connors, Kawata & Gibson 2006), Sagittarius

dwarf (Ibata, Gilmore, & Irwin 1994; Majewski et al. 2003; Newberg et al. 2003), and Canis

Major dwarf (Martin et al. 2005). The Andromeda Spiral Galaxy (M31), our nearest large

neighbor, also hosts a number of tidally distorted and disrupted satellites. These include the

dwarf elliptical galaxy NGC 205 (Kent 1987; Choi, Guhathakurta, & Johnston 2002; Geha

et al. 2006), the compact elliptical galaxy M32 (Kent 1987; Choi et al. 2002), the Giant

Southern Stream (Ibata et al. 2001; Font et al. 2006; Fardal et al. 2007), and possibly the

satellite galaxy Andromeda VIII (Morrison et al. 2003). In this paper, we present a detailed

study of the tidal interaction between M31 and the dwarf elliptical galaxy NGC 205.

In addition to being building blocks of larger galaxies, dwarf galaxies are interesting in

their own right. Of the various dwarf galaxy types, dwarf elliptical (dE) galaxies are the

least understood, and their origin is heavily debated. What is known about dEs is that they

are a galaxy population found exclusively in denser regions, accounting for more than 75%

of the objects in cluster environments (Binney & Tremaine 1987; Trentham & Tully 2002).

They are typically dark matter poor in their inner regions and predominantly gas poor.



– 3 –

The two general dE formation theories postulate that these galaxies are primordial building

blocks or an evolved/transformed population, but neither theory is capable of explaning all

the observables. The first theory, based on Cold Dark Matter models, asserts that these are

low mass, primordial building blocks that formed early (z > 6) in their present locale. If

dEs formed by this scenario, we could gain insight into the very first galaxies to form by

studying these relics. The second theory postulates that dEs are born as more massive spiral

galaxies which are subsequently altered as a result of interactions with other galaxies through

tidal effects (Moore, Lake, & Katz 1998; Ricotti & Gnedin 2005). If dEs are transformed

spirals then this transformation is expected to cause an increase in the velocity dispersion

and induce some rotation (Moore et al. 1998). However, this scenario is unable to explain

the observed distribution of rotation speeds and velocity dispersions among Virgo Cluster

dEs. Specifically, it cannot explain the presence of a substantial population of dEs with no

detectable rotation and relatively low velocity dispersion (Geha, Guhathakurta, & van der

Marel 2002, 2003). To complicate matters further, the faint underlying disks are found in

both rotating and non-rotating dEs (Geha et al. 2003; Lisker, Grebel, & Binggeli et al. 2006).

It is also possible that the dEs result from some combination of the above two mechanisms.

A complete model explaining dE formation is still needed. Local group dE galaxies offer an

excellent resource for the exploration of these and other formation scenarios.

Unlike the Milky Way which does not host any dE satellites, M31 hosts a total of three:

NGC 185, NGC 147, and NGC 205. NGC 185 and NGC 147 lie far enough away from

M31 to escape present tidal distortion. NGC 205 lies a projected 37′ from M31 and is our

nearest example of a tidally distorted dE galaxy. It is a gas poor, low luminosity, early-type

galaxy with an exponential surface brightness profile (Choi et al. 2002), defining features of

dE galaxies. The little gas and dust in NGC 205 is concentrated within a 1′ radius, beyond

which the satellite is essentially gas and dust-free (Young & Lo 1997; Welch, Sage, & Mitchell

1998). The current line-of-sight distance estimate between NGC 205 and M31 is about 39

kpc, with M31 residing 785± 25 kpc and NGC 205 at 824± 27 (McConnachie et al. 2005).

Throughout this paper, we adopt this distance of 824 kpc to NGC 205. The absolute V -band

magnitude of NGC 205 is MV = −16.5, corresponding to a few percent of M31’s luminosity

(Hodge 1992; Choi et al. 2002). Bender, Paquet & Nieto (1991) reports a mass-to-light ratio

for NGC 205 of (M/L) ≈ 7. This value is consistent with dynamical models of dEs that

suggest a global mass-to-light ratio of 3 ≤ ΓV ≤ 6 and is indicative of an intermediate to old

stellar population containing little to no dark matter within an effective radius (Geha et al.

2002). De Rijcke et al. (2006) finds a B-band mass-to-light ratio within 2Re = 260′′ (1.04

kpc) of (M/L)B = 4.5+1.5
−1.0(M/L)�. This supports the conclusion that there is little dark

matter contained within the inner regions of NGC 205. It is not known whether NGC 205

resides in an extended dark matter halo.
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There is strong evidence that NGC 205 is tidally distorted by M31. Choi et al. (2002)

measure twisting of elliptical isophotes, along with a subtle break in the surface brightness

profile, providing confirmation of tidal distortion found in earlier studies. A radial velocity

survey of red giant branch stars (RGB) in NGC 205 by Geha et al. (2006) notes an abrupt

turnover in the semi-major axis velocity profile coincident with the tidal distortion reported

by Choi et al. (2002). McConnachie et al. (2004) postulates that the ∼ 1◦ (15 kpc) long, arc-

like feature seen in the northwest quadrant of M31 could be a stellar stream associated with

NGC 205. Demers, Battinelli, & Letarte (2003) report possible evidence of tidal debris to

the west of NGC 205 beyond its tidal radius in their study of C stars in the system. Within

an effective radius, NGC 205 appears to be undistorted. However, beyond this radius, there

is strong evidence for distortion.

In this paper we investigate the large parameter space defining the orbit and history of

NGC 205 using a restricted N -body code and a genetic algorithm for optimization. Modeling

satellite/parent galaxy interactions is extremely difficult when there are no gaseous or stellar

streams to directly constrain the path of the satellite’s orbit. In the absence of tidal trails,

as is the case for NGC 205, there is a limited set of observable quantities that can be

used as constraints: stellar radial velocities, projected sky position, and constraints on the

line-of-sight distance. To complicate matters further, large parameter spaces with inherent

degeneracies typically define galaxy encounters. Hence, in weakly distorted systems, it is

difficult to find unique, qualified fits to the observables. For this reason, few optimized

N -body studies of mildly distorted galaxies have been carried out. In our simulations we

employ a genetic algorithm to achieve optimization (Holland 1975; Goldberg 1989). This

particular optimization technique has been successfully used in similar studies of more heavily

distorted dwarf galaxies (Theis & Kohle 2001; Theis, Gerds, & Spinneker 2001). Using a

restricted N -body code, we explore three distinct, initially stable configurations of 1000

test particles representing NGC 205: a (cold) rotating disk without velocity dispersion, a

(warm) rotating disk with velocity dispersion, and a (hot) spheroid supported completely by

randomly distributed, isotropic velocities. Detailed photometric and kinematic observations

enable this unique study by providing strong constraints on the simulated system (Choi et al.

2002; Geha et al. 2006).

The paper is laid out as follows: in § 2 we discuss the photometric and kinematic ob-

servational data used to constrain our system. In § 3 we give the details of the parameters,

galaxy models, and methods used in our numerical simulations. In § 4 we present the results

of the numerical simulations. In § 5 we discuss the implications of our results. Finally, in § 6

we discuss the observational and computational improvements that could be applied to this

study.
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2. OBSERVATIONAL DATA

Our study of NGC 205 is unique because we enforce both photometric and kinematic

constraints on our simulated system. Although this cannot ensure that we converge on the

correct orbital history of NGC 205, it does remove a significant amount of the degeneracy

inherent in studies that only use photometric constraints. Strong evidence of tidal distortion

is seen both in the photometry and the kinematics of NGC 205 at a major-axis distance

of r ∼ 4.5′ − 5′ (1.1 − 1.2 kpc) (Choi et al. 2002; Geha et al. 2006). A discussion of the

surface photometry by Choi et al. (2002) is included in § 2.1, and a discussion of the internal

kinematics by Geha et al. (2006) is included in § 2.2. These observations are summarized in

Figure 1.
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Fig. 1.— Observed properties of the M31-NGC 205 system. The colored dots represent

NGC 205’s semi-major axis velocity relative to its systemic velocity of −246 km s−1 as

measured by Geha et al. (2006). Note the turnover in velocity at the semi-major axis distance

of ∼ 270′′ (1.08 kpc) is coincident with the isophotal twisting radius measured by Choi et al.

(2002). The labels A–F are defined as follows: A=center of NGC 205, B=radius at which the

use Choi et al. (2002) data begins (internal to this we use an exponential surface brightness

profile), C=radius at which isophotal twisting and radial velocity turnover occurs, D=radius

at which the use of Choi et al. (2002) data ends (external to this we use an exponential

law), E=center of M31, F=center of M32. The projected distance between NGC 205 and

M31 (points A and E) is 36.6′, or 8.8 kpc if we take NGC 205 to be at a distance of 824

kpc (McConnachie et al. 2005). The photometric contours B, C, & D lie at semi-major

axis distances of 100′′ (0.40 kpc), 260′′ (1.04 kpc), and 672′′ (2.68 kpc), respectively. (Image

courtesy of Phil Choi)
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2.1. Photometric Data

The surface photometry of NGC 205 in the B - and I -bands was obtained by Choi et al.

(2002) using the Kitt Peak National Observatory 0.9/0.6 meter Burrell Schmidt telescope.

Due to the incompleteness of the I -band coverage, Choi et al. (2002) employed the B -band

data and IRAF’s ELLIPSE task to determine the surface brightness contours of NGC 205

out to a limiting magnitude of µB = 27 mag arcsec−2, coinciding with a semi-major axis

distance of 720′′(2.88 kpc).

Choi et al. (2002) reports that NGC 205 is well fit by two different exponential profiles at

various semi-major axis radii. One profile, covering a semi-major axis range of 75′′ < r < 250′′

(0.30 < r < 1.00 kpc), has a disk scale length of rexp
0 = 150′′ (0.60 kpc), where r0 is defined as

the radius at which the intensity has decreased by a factor of e; the other profile, covering a

semi-major axis range of 150′′ < r < 250′′ (0.60 < r < 1.00 kpc) and r > 500′′ (2.00 kpc), has

a disk scale length of rexp
0 = 170′′ (0.68 kpc). Also reported was a “subtle downward break”

at r = 300′′ (1.20 kpc), which correlates nicely with the semi-major axis distance of r = 260′′

(1.04 kpc) that marks the location where the isophotal position angle and ellipticity stop

increasing and begin decreasing, leading to a S -shaped semi-major axis profile for NGC 205.

The location of this isophotal twisting matches the radial velocity turnover radius of 4.5′

(270′′ or 1.08 kpc) observed by Geha et al. (2006), thus supporting the conclusion that

NGC 205 is interacting tidally with M31.

We perform our own exponential fit of the form:

I(r) = I0e
−r/r0 (1)

to the intermediate parts of Choi et al. (2002) intensity profile in order to estimate the disk

scale length of the galaxy if it were tidally undistorted. We exclude the nucleus (interior to

100′′, or 0.40 kpc) where the data follows neither an exponential law (exp[−r/r0]) nor a de

Vaucouleurs law (exp[−kr1/4]), and the outer regions (exterior to 672′′, or 2.68 kpc) where the

surface brightness and sky become comparable. We measure a disk scale length of r0 = 148′′

(0.59 kpc) and a central (nucleus-free) surface brightness of I0 = 21.1 magnitudes per square

arcsecond. These results are used as a basis for generating an undistorted NGC 205 and

modeling the inner and outer regions of NGC 205 in its final, integrated state. Hence, we are

able to remove the nucleus from NGC 205 by extrapolating the exponential surface brightness

profile from the intermediate region (100′′ − 672′′) to the central region (0′′ − 100′′). The

surface brightness profile of Choi et al. (2002), our exponential surface brightness fit, and

the data used in our simulations are summarized in Figure 2.
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Fig. 2.— Surface brightness profile of NGC 205 in magnitudes per square arcsecond versus

semi-major axis distance. The solid line illustrates the brightness profile in B magnitudes

measured by Choi et al. (2002), the dashed line represents the exponential fit performed

using the intermediate regions of Choi et al. (2002) data (100′′ to 672′′), and the blue line

defines the data used in our simulations. Note that in the intermediate regions (100′′ to

672′′) we use Choi et al. (2002) measurements, and in the inner (> 100′′) and outer (< 672′′)

regions we use our exponential fit. This effectively removes the nucleus from the inner region

and models the data in the outer region where the surface brightness of the galaxy and the

sky brightness become comparable.



– 9 –

2.2. Kinematic Data

A recent kinematic study of NGC 205 by Geha et al. (2006) using the Keck/DEIMOS

multislit spectrograph resulted in the collection of radial velocities for 725 RGB stars. The

stellar spectra were obtained using 4 masks, each covering an area of ≈ 16′× 4′ (3.83× 0.96

kpc). Two of these masks were centered on NGC 205 along the major axis, while the other

two were placed off center along the tidally distorted major axis, one in south-east (SE) and

one in north-west (NW). These observations extend out to 20′ (4.79 kpc), well beyond the

tidal radius of NGC 205, and are spatially well distributed. The contamination by M31 field

stars is estimated to be only a few percent.

The systemic velocity of NGC 205, as measured by Geha et al. (2006), is−246±1 km s−1,

while the systemic velocity of M31 is −300 ± 4 km s−1 (de Vaucouleurs 1991). This results

in a velocity for NGC 205 of 54± 5 km s−1 relative to M31. The velocities of the NW tail of

the satellite are more positive, while the SE tail, which is closer to M31, are more negative

as compared to NGC 205’s systemic velocity. The opposite is true in the central regions

(< 270′′).

Geha et al. (2006) maps the semi-major axis velocity profile of NGC 205 by binning the

RGB stars perpendicular to the S -shaped major axis into ≥ 1′ (0.24 kpc) radial bins. The

velocity of each bin, containing a minimum of 25 stars, is determined by fitting a Gaussian

profile to its stars. The resulting fit is plotted in Figure 3. The major-axis rotation curve

of NGC 205 shows a distinct velocity turnover (with vmax = 9± 4 km s−1) at 4.5′, which is

coincident with the estimated tidal radius (∼ 4′) and onset of isophotal twisting (see § 2.1).

Geha et al. (2006) suggests that this feature is due to gravitational interaction between

NGC 205 and M31, and infers that NGC 205 is on a prograde encounter. If correct, over

half of Geha et al. (2006) evenly sampled RGB stars lie outside NGC 205’s tidal radius,

meaning they have been tidally stripped from the satellite and are no longer bound. The

ratio of the maximum rotational velocity to the average velocity dispersion of NGC 205

(assuming an average ellipticity of ε = 0.43) is vmax/σ = 0.21 (Geha et al. 2006). Given

that the expected ratio for an isotropic, oblate, rotational-flattened galaxy with ε = 0.43 is

v0/σ0 ≈ 1.1 and that similar anisotropic Virgo dE’s on average have v0/σ0 < 0.1, NGC 205

falls somewhere between a rotational supported body and an anisotropic object (Binney &

Tremaine 1987; Geha et al. 2006).
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Fig. 3.— NGC 205’s semi-major axis radial velocity (relative to M31) and dispersion profile

as reported by Geha et al. (2006). (a) The black dots represent the combined velocity

measurements of RGB stars. At distances of ∼ 270′′ (1.08 kpc) from the center of NGC 205

tidal distortion becomes evident. (b) The slope interior to the distortion of NGC 205. The

ranges used to constrain our simulations are illustrated in the insert and correspond to a

lower limit of −0.08 km s−1 arcsec−1 and an upper limit slope of 0.0 km s−1 arcsec−1 (or

−20 km s−1 kpc−1 and 0 km s−1 kpc−1, respectively, when NGC 205 lies at a distance of

824 kpc). (c) The velocity dispersion of NGC 205 along the semi-major axis.
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We perform a linear fit to the the interior regions (< 270′′) of NGC 205 where significant

tidal distortion has not yet occurred. Using Geha et al. (2006) error bars for each velocity

measurement, we determine a maximum and minimum slope for the satellite’s central velocity

profile of 0.0 km s−1 arcsec−1 and −0.08 km s−1 arcsec−1, respectively. This significance

level corresponds to 1.83σ and is plotted in Figure 3. We use both this subset and the full

dataset to constrain the motion of test particles in our numerical simulations (see § 3.6.2 and

§ 3.6.3).

3. NUMERICAL SIMULATIONS

The previous section discusses the photometric and kinematic observations of NGC 205.

In order to reproduce the observed features of NGC 205, we trace NGC 205’s center of

mass back half an orbit, set up an initial configuration of test particles (to represent the

undistorted NGC 205), and allow it to interact under the influence of both NGC 205’s and

M31’s potential. The final, integrated galaxy is then compared to photometric and kinematic

observations. Strict upper and lower limits are placed on the variable parameters and a

genetic algorithm is employed to effectively search our parameter space. In the following

sections we discuss the explorable parameters of the system (§ 3.1), the potentials of both

galaxies (§ 3.2), the initial configurations of NGC 205’s test particles (§ 3.3), the integration

scheme (§ 3.4), the genetic algorithm used to improve on the initial guesses (§ 3.5), and,

finally, our method of comparing the integrated system to observations (§ 3.6). The goal of

these simulations is to determine the orbital parameters of NGC 205.

For our simulations, the units are chosen such that the distance unit is 2503′′ (or 10 kpc

if we assume NGC 205 lies at a distance of 824 kpc), the velocity unit is 280 km s−1, and

G = 1. This roughly results in a mass unit of 1.8 ×1011M� and a time unit of 35 Myr.

3.1. System Parameters and Constraints

There are a total of 10 free parameters in our numerical simulation. Six of these pa-

rameters define the initial conditions of the undistorted NGC 205 system, while the other

four define the final conditions of the present day observed system. The six initial condition

parameters are the mass of NGC 205 (M205), the disk scale length (r0,i), the relative orien-

tation (in φ, θ) of NGC 205’s initial, undistorted disk, whether NGC 205 is on a prograde

or retrograde orbit about M31 (∆θ), and the Hernquist (1990) scale length (the radius at

which a quarter mass is enclosed) of NGC 205’s potential (a205). The four final constraints
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are the three-component final velocity vector of NGC 205’s center of mass relative to M31’s

center of mass (vx, vy, vz), and the line-of-sight distance between NGC 205 and M31 (z). A

detailed discussion of the upper and lower limits placed on each of these parameters is mo-

tivated and discussed in detail below. The parameters are discretized into 256 steps within

their given constraints, with the sole exception of the prograde/retrograde parameter, ∆θ,

which can take on a value of either 0 or 1. This number of steps is chosen such that the

genetic algorithm can thoroughly explore our defined parameter space, while limiting the

time needed to perform the simulations. These given parameter values define approximately

1022 possible orbits. In the continuous real world, there are an infinite number of orbits. A

summary of the constraints is given in Table 1.
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Table 1. NGC 205 Genes

Parameter Symbol Lower Limit Upper Limit

Mass M205 8.2× 108M� 5.0× 109M�

Disk Scale Length (disk only):

...angular size r0,i 15′′ 313′′

...at distance of 824 kpc r0,i 0.06 kpc 1.25 kpc

Clockwise Rotation (disk only) φ 0◦ 180◦

Inclination (disk only) θ −180◦ 180◦

Prograde vs. Retrograde (disk only) θ −∆θ ∆θ ≡ 0◦ ∆θ ≡ 180◦

Hernquist Scale Length:

...angular size a205 0′′ 2503′′

...at distance of 824 kpc a205 0 kpc 10 kpc

Distance from M31 z 2 kpc 76 kpc

Center of Mass x-Velocity vx −500 km s−1 500 km s−1

Center of Mass y-Velocity vy −500 km s−1 500 km s−1

Center of Mass z-Velocity vz 49 km s−1 59 km s−1

Note. — Constrained parameters (genes) searched by the genetic algorithm

in the numerical simulations. Each parameter contains 256 steps between the

upper and lower limits, with the exception of θ −∆θ which can take on a value

of 0 or 1.
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Mass. The mass of NGC 205 is not currently well known. A recent constraint was placed

on the mass contained within a 2Re radius sphere by De Rijcke et al. (2006) of M205(2Re) =

10.2+3.3
−2.0 × 108M�. We use De De Rijcke et al. (2006) minimum of M205 ≥ 8.2 × 108M�as

a lower limit on the total mass of NGC 205 (i.e. if all the mass were contained within 2Re)

and set a very liberal upper limit of M205 ≤ 5.0× 109M�.

Disk scale length. This parameter is used when NGC 205 is modeled as a disk. In

§ 2.1 we determined that the observable disk scale length of NGC 205 is r0 = 148′′. We

assume that at earlier times NGC 205’s surface brightness profile followed an exponential

law governed by a different r0, which has since been affected by its interaction with M31. We

therefore allow the genetic algorithm to explore the range 15′′ ≤ r0,i ≤ 313′′ for the initial

disk scale length in order to model the undistorted NGC 205. If NGC 205 indeed lies at a

distance of 824 kpc, then this r0 range corresponds to 0.0625 kpc ≤ r0,i ≤ 1.25 kpc. The

disk scale length is also used to determine the maximum distance an initial test particle can

be placed in the disk of NGC 205. We chose a maximum distance of 8r0,i; however, at this

distance we expect to find very few particles since the initial distribution is subject to follow

an exponential law.

Initial disk orientation. These orientation parameters are used when NGC 205 is

modeled as a disk. We assume axisymmetry for NGC 205’s initial, undistorted disk and

describe its orientation in 3-D space by two of the three Euler angles. We define the plane

of the sky as the x-y plane centered on M31 with the positive x-axis in the direction of

increasing RA, the positive z-axis pointing towards the observed NGC 205 and the negative

z-axis pointing towards us. In our defined coordinate system, the Euler angle φ describes

turning the galaxy’s x-axis clockwise in the x-y plane and is also allowed to vary from 0◦

to 180◦. The inclination angle θ describes tilting the galaxy about the rotated x-axis and is

allowed to vary from 0◦ to 180◦. An inclination angle of 90◦ means the initial galaxy appears

edge on, while an inclination angle of either 0◦ or 180◦ means the initial galaxy appears face

on. Note the visual symmetry about 180◦, which does not translate into dynamical symmetry.

The Euler angle ψ describes revolution about the rotation axis and is meaningless due to

the axisymmetry of NGC 205’s disk. Similarly, the axisymmetry of NGC 205 makes visual

searches in the range 180◦ to 360◦ for φ and θ redundant. Thus, the position (but not the

dynamics) of NGC 205’s initial disk is completely described by the parameters φ and θ in

the range 0◦ or 180◦.

Prograde vs. Retrograde. This parameter is used when NGC 205 is modeled as a

disk. Since the initial sense of rotation of NGC 205 is unknown, it is important to explore

both prograde and retrograde orbits. A prograde orbit means that the galaxy is rotating in

the direction of the encounter, while a retrograde orbit means it is rotating in the direction
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against the encounter. As mentioned in the previous paragraph, exploring θ in the range

of 0◦ to 180◦ provides a complete visual search, but not a complete dynamical search. For

completeness, we introduce the rotation parameter ∆θ into our simulation whose purpose is

to determine whether the Euler angle θ will be flipped about 180◦. The rotation parameter

can be set to either 0◦ or 180◦, where ∆θ = 0◦ means θ is unchanged and ∆θ = 180◦ changes

θ to θ − 180◦. Hence, this parameter essentially allows θ to vary from −180◦ to 180◦ so

that both prograde and retrograde orbits can be explored. The motivation for using this

separate parameter, ∆θ, rather than just allowing θ to vary initially from −180◦ to 180◦ is

that ∆θ’s binary nature provides an easy means for the genetic algorithm to instantly change

the direction of the encounter via mutation or reproduction (see § 3.5 for more information

on the genetic algorithm). That is, the genetic algorithm is capable of changing the rotation

of the disk by merely turning this parameter off or on. Note, this effect could have also been

achieved using the φ parameter instead.

Hernquist scale length. We model NGC 205’s potential as a spherical symmetric

distribution of matter governed by a Hernquist profile (§ 3.2, Eqn 2). The concentration of

the combined dark and baryonic matter in NGC 205 is governed by Hernquist scale length

parameter, a205 (or a0 in Eqn 2). We set a lower limit on a205 of 0′′, corresponding to a

Keplerian potential, and an upper limit of 2503′′, which at a distance of 824 kpc would

correspond to a scale length of 10 kpc.

Velocity. The mean radial velocities of M31 and NGC 205 are −300 ± 4 km s−1 (de

Vaucouleurs 1991) and −246 ± 1 km s−1 (Geha et al. 2006), respectively, resulting in a

relative radial velocity for NGC 205 of 54 ± 5 km s−1 with respect to M31 (see § 2.2). Thus

the radial velocity component, vz, is given a lower limit of 49 km s−1 and an upper limit

of 59 km s−1. The transverse velocity components, vx and vy, are given upper and lower

limits dictated by the escape velocity of NGC 205’s center of mass relative to M31, and are

therefore not only functions of z and vz, but also of M31’s mass. In order to explore both

bound and unbound orbits, we allow vx and vy to explore the full range of NGC 205’s escape

velocity, with a maximum escape velocity of 500 km s−1 if NGC 205’s line-of-sight distance

and velocity (z and vz) are at their minimums.

Line-of-sight distance. The reported distances to M31 and NGC 205 are 785±25 kpc

and 824±27 kpc, respectively (McConnachie et al. 2004). By adding the errors in quadrature,

we approximate the line-of-sight distance to be 39± 37 kpc and allow the genetic algorithm

to search within the range of 2 kpc to 76 kpc for the final position of NGC 205. We recognize

that this is a generous range to search, but decide to err on the side conservatism.



– 16 –

3.2. Galaxy Potential Models

The close proximity of M31 to NGC 205 stipulates that fairly accurate potentials are

necessary in modeling the interaction between the galaxies. However, there is an implied limit

to the level of complexity of the models resulting from the large number of orbits searched

by the genetic algorithm. That is, using too simple of a model can result in incorrect final

integrated positions and velocities, and, if the model is too complex, the genetic algorithm

will spend large amounts of time attempting to complete a single orbit. Hence it is essential

to find balance between the two requirements in order to come up with an optimal model.

In this subsection we discuss the potential models used in our simulations. We assume that

the galaxy potentials are not changing significantly during the course of the interaction and

thus remain static.

Previous studies suggest dwarf elliptical galaxies do not contain a significant amount

of dark matter in their inner regions. The amount of dark matter in the outer regions of

dEs is completely unknown. Thus, one of the goals of this project is to probe the dark

matter content of NGC 205. We make the simple, but appropriate, approximation that the

potential of NGC 205 is a spherically symmetric spheroid with a Hernquist profile (Hernquist

1990). However, it should be noted that the ideal model for NGC 205 is a stellar population

orbiting in a fully consistent potential with a brightness profile lying somewhere in between

an exponential disk and exponential bulge (i.e. a hot, exponential disk). The difficulty of

constructing such a model is demonstrated by the complex photometry discussed in § 2.1.

For the purpose of this paper we model NGC 205’s potential as,

Φb(r) = − GM

a0 + r
(2)

where M is the total mass of NGC 205 (stars, interstellar gas, dark matter), a0 is the

Hernquist scale length that defines the concentration of matter in NGC 205, and r is the

distance from the center of NGC 205. Both the mass and the Hernquist scale length are

variables probed by the genetic algorithm.

The potential of M31 is best represented by a three-component model containing a bulge,

a disk and a halo. Geehan et al. (2005) derives a “Simple Analytic Bulge-Disk-Halo Model”

using a spherical symmetric Hernquist profile for the bulge (Eqn 2), an infinitesimally thin,

exponential disk and a spherically symmetric NFW profile for the extended dark halo given

by

Φh(r) = −4πGδcρcr
2
h

(rh

r

)
ln

[
r + rh

rh

]
(3)

where δc is a dimensionless density parameter, ρc = 277.72h2M�kpc−3 is today’s critical

density with Hubble constant h = 0.71 in units of 100 km/s/Mpc, and rh is the halo scale
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radius (Navarro, Frenk & White 1996).

The exponential disk model used by Geehan et al. (2005) is presently without a known

analytic solution. Although the equation and its spatial derivatives can easily be solved nu-

merically, the amount of time required to integrate a set of particles through a complete orbit

becomes unreasonable for our purposes. An alternative approach is to construct a large table

of values for the spatial derivatives and perform a bi-cubic interpolation in both R and z in

order to find the force on a single particle at each step in the integration. Unfortunately, this

latter method is unable to significantly decrease the amount of computation time required

for a single orbit. Thus, we use a Miyamoto & Nagai (1975) disk which provides results that

are comparable to those from the exponential disk used by Geehan et al. (2005):

Φd(R, z) =
−GMd√

R2 + (Rd +
√
z2 + b2)2

(4)

where Rd is the disk scale length and b is the vertical scale factor.

We use the “Best-fit Model” values derived by Geehan et al. (2005) to describe the

various parameters of M31, with the sole exception of b, the vertical scale factor, which was

not a reported parameter. For b we use the vertical scale height of the dust at a value of

0.1 kpc (Hatano et al. 1997). The values reported by Geehan et al. (2005) include the bulge

mass, with Mb = 3.3 × 1010M�, the bulge scale factor, with a0 = rb = 0.61 kpc, the disk

central surface density, with Σ0 = 4.6× 108M� kpc−2, the disk scale radius, with Rd = 5.4

kpc, the halo scale radius, with rh = 8.18 kpc, and the total mass enclosed inside 125 kpc,

with M(< 125 kpc)= 5.6× 1011M�. To compute the mass of the disk we use,

Md = 2πR2
dΣ0 = 8.4× 1010M� (5)

for the halo mass we use,

Mh = M(<125kpc) −Md −Mb = 4.4× 1011M� (6)

and to find the dimensionless density parameter δc we use the values for r and Mh at r = 125

kpc, and solve the mass profile for a NFW halo,

Mh = 4πGδcρcr
3
h

[
ln

(
r + rh

rh

)
− r

r + rh

]
(7)

This results in a dimensionless density parameter value of,

δc =
Mh

4πρcr3
h(ln [(r + rh)/rh]− r/(rh + r))

= 24.8× 104. (8)

A summary of these parameters is given in Table 2.
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Table 2. M31

Parameter Symbol Value

Bulge:

Mass Mb 3.3× 1010M�

Scale Radius rb 0.61 kpc

Disk:

Central Surface Density Σ0 4.6× 108M� kpc−2

Mass Md 8.4× 1010M�

Scale Radius Rd 5.4 kpc

Vertical Scale Height b 0.1 kpc

Halo:

Mass Mh 4.4× 1011M�

Scale Radius rh 8.18 kpc

Density Parameter δc 24.8× 104

Total:

Mass (< 125 kpc) M(<125 kpc) 5.6× 1011M�

Note. — M31 parameter values used in the numerical simula-

tions adopted from the values in Geehan et al. (2005).
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3.3. Arrangement of NGC 205’s Test Particles

In addition to the parameters discussed in § 3.1 and the potentials outlined in § 3.2,

the satellite’s initial, undistorted particle configuration (both in position and velocity space)

directly affects the appearance of the final, integrated distribution of particles. The particles

are used as tracers of surface brightness and to map the radial velocity profile of the galaxy.

The present true brightness profile of NGC 205 lies in between an exponential and r1/4 law

(Kent 1987; Choi et al. 2002), while the galaxy’s support is thought to come from a mix

of both rotational and anisotropic velocities (Geha et al. 2006). As mentioned in § 2.2, the

current observed ratio of the maximum rotational velocity to the average velocity dispersion

is vmax/σ = 0.21. Hence the current structure of particles in the satellite lies somewhere

between an exponential bulge and exponential disk.

The morphology of NGC 205 before tidal distortion is unknown, while a wide range of

internal dynamics has been observed for cluster dEs, ranging from non-rotating to rotational

flattened dEs (Geha et al. 2003). Furthermore, it is unclear which features of NGC 205

are due to intrinsic properties, projection, or tidally interaction. For this reason, we test

three configurations for NGC 205: a rotating cold exponential disk (§ 3.3.1), a non-rotating

hot spheroid (§ 3.3.3) , and a rotating warm exponential disk (§ 3.3.2). These configura-

tions explore the two extremes, a rotationally supported satellite with vmax/σ = ∞ and an

isotropically supported satellite with vmax/σ = 0, as well as an intermediate construction, a

warm disk with 1.05 < vmax/σ < 4.25. These three models are outlined in detail below.

3.3.1. Rotating Cold Disk

Our most basic model for NGC 205 places mass-less test particles in an infinitely thin,

flat disk. The particles are randomly distributed in accordance with an exponential surface

brightness profile, as given in Eqn 1. We assume that the central (nucleus free) surface

brightness, I0, has not evolved and that the undistorted NGC 205 follows an exponential

characterized by a variable scale length, r0,i. We set the maximum radius of NGC 205 to

8r0,i, a location at which very few particles are expected. In addition to r0,i, the particle

positions in NGC 205’s initial disk are also defined by the disk’s clockwise rotation in the

x-y plane, φ, and inclination angle, θ. The values of these three parameters (r0,i, φ, θ) are

obtained from the genetic algorithm.

Initially, the cold disk is completely supported by rotation, such that vmax/σ = ∞.

Each particle moves in a circular orbit about the satellite’s center under the influence of a
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Hernquist profile. This results in a circular velocity, in the plane of NGC 205’s disk, of

vc =

√
GMr

(r + a0)2
(9)

where M is the mass of NGC 205, a0 is the Hernquist scale length of NGC 205, and r is

the particle’s distance from the center of NGC 205. The direction of rotation in the disk is

determined by the parameter θ−∆θ. Hence, the particle’s circular velocities are very simply

defined by their distance from the satellite’s center and by the three variable parameters:

M205, a205, and θ−∆θ. Any dispersion found in the final, integrated system is a direct result

of tidal interaction with M31.

3.3.2. Rotating Warm Disk

A more realistic model for NGC 205 arranges mass-less test particles in a disk with some

vertical thickness. We employ the method prescribed by Hernquist (1993) using cylindrical

coordinates and distribute the particles in an exponentially decaying density profile given

by,

ρ =
M

4πr2
0z0

exp(−R/r0)sech2

(
z

z0

)
(10)

where R is the cylindrical radius, M is the mass of the satellite, r0 is the disk scale length,

and z0 is the vertical scale thickness. For our simulations, we set vertical scale thickness,

z0, equal to the scale radius, r0,i, in order to create a “puffier” disk. As with the cold disk

model outlined in § 3.3.1, the maximum radius of NGC 205 is constrained to 8r0,i and the

disk is oriented using the φ and θ parameters obtained from the genetic algorithm.

The warm disk is supported by a combination of rotational and anisotropic velocities.

Using the method outlined by Hernquist (1993), self consistent disks are approximated using

the moments of the collisionless Boltzmann equation. In order to avoid imaginary streaming

velocities (σ2
φ < 0) near the center, the softened version of the radial dispersion equation is

used,

σ2
R = A exp(−

√
R2 + 2a2

s/r0) (11)

where as is the disk softening radius and A is the normalization constant. As prescribed by

Hernquist (1993), the softening radius is set to r0/4. The normalization factor, A, can then

be easily computed by specifying σ2
R at R = r0,

A = σ2
R=r0

exp(
√
r2
0 + 2a2

s/r0) (12)
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However, we cannot simply set the radial dispersion at one scale length equal to the observed

dispersion in NGC 205 of 35± 5 km s−1 (Geha et al. 2006). This would cause the streaming

velocities to become imaginary for much of the parameter space. To avoid this potential

problem, the maximum allowed radial dispersion that imposes σ2
φ ≥ 0 is used, with the

caveat that σR cannot exceed 29 km s−1. The vertical dispersion perpendicular to the plane

of the disk is given by,

σ2
z = πGΣ(R)z0 (13)

where Σ(R) is the disk surface density given by the local Hernquist density (Hernquist 1990),

Σ(R) = 2ρz0 =
Ma0z0

πR(R + a0)3
(14)

and a0 is the Hernquist scale length. Using the epicyclic approximation, the azimuthal

dispersion can be related to the radial dispersion,

σ2
φ = σ2

R

κ2

4Ω2
(15)

where the epicyclic and angular frequencies are respectively given by,

κ2 =
3

R

∂Φ

∂R
+
∂2Φ

∂R2
(16)

Ω2 =
v2

c

R2
(17)

with the circular velocity vc given by Eqn 9 and the potential energy Φ of a Hernquist profile

given by Eqn 2. If we assume that the velocity ellipsoid stays aligned with the coordinate

axes, the streaming velocity becomes,

vφ
2 = v2

c + σ2
R(1− κ2

4Ω2
− 2

R

r0
) (18)

Once these low order moments are determined, the radial and vertical velocities for

individual particles can be drawn randomly from Gaussians with widths σR and σz, while

the azimuthal velocity is determined by adding the streaming velocity, vφ, to the velocity

value drawn from a Gaussian with width σφ. This configuration results in observable ratios

of the maximum rotational velocity to the average velocity dispersion dispersions of 1.05 <

vmax/σ < 4.25. Since the satellite still contains rotational support, the parameter θ −∆θ is

used to specify the direction of this rotation.
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3.3.3. Non-Rotating Hot Spheroid

The third model for NGC 205 configures the satellite as a dynamically hot, pressure

supported spheroid. Hence, the velocities of this model are completely isotropic. This

construction is essentially the counter to the rotationally supported, cold disk model outlined

in § 3.3.1. The density profile follows the analytical model for spherical galaxies outlined by

Hernquist (1990),

ρ(r) =
M

2π

a0

r

1

(r + a0)3
(19)

where M is the mass of the satellite, a0 is the Hernquist scale length of NGC 205, and r is

the particle’s distance from the center of NGC 205. As with the previous two models, the

maximum radius of NGC 205 is constrained to 8r0,i.

Using the energy dependent distribution function, f(E), for a Hernquist profile, a

spheroid supported by isotropic velocities can be constructed using random realizations

(Hernquist 1990; Ascasibar & Binney 2005). The phase-space density as a function of specific

energy is,

f(E) =
M/a3

0

4π3(2GM/a0)3/2

×
3 sin−1(q) + q

√
(1− q2)(1− 2q2)(8q4 − 8q2 − 3)

(1− q2)5/2
(20)

with the dimensionless variable q defined as,

q ≡
√
− a0

GM
E (21)

The specific energy E of a particle at position r and velocity v is,

E =
1

2
v2 + Φ(r) (22)

with Φ(r), the potential energy for a Hernquist profile, given by Eqn 2. We normalize the

distribution function in a volume element d~rd~v, centered on (~r, ~v), by dividing fd~rd~v by

its maximum. This maximum corresponds to the point in parameter space containing the

largest amount of mass (and in our case, mass-less test particles). Using spherical symmetry,

d~rd~v becomes 4πr2dr4πv2dv. Hence, the maximum of fd~rd~v is easily found numerically and

resides at rpeak = 0.638a0 and v = vc(rpeak), where vc is the circular velocity given by Eqn 9.

Using the normalized fd~rd~v, particles are placed in phase space using a von Neumann

rejection technique (Press et al. 1986). Tentative values for r and v are randomly chosen

within the range 0 ≤ r ≤ 8r0,i and 0 ≤ v ≤ vesc =
√
−2Φ(r), and a tentative fd~rd~v is
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computed. Next, a random number k between 0 and 1 is selected (where 1 corresponds

to the normalized peak of fd~rd~v). The provisional values for r and v are kept only if

k ≤ fd~rd~v, else the process is reinitiated until the condition is satisfied. Once r and v are

generated, position and velocity angular coordinates are randomly chosen from 0 ≤ φ ≤ 2π

and −1 ≤ cos θ ≤ 1, and the particle is placed in the satellite. The procedure is then

repeated until the satellite is completely populated with the desired number of particles.

This configuration results in a galaxy with a density profile given by Eqn 19 and that is

completely supported by isotropic velocities (vmax/σ = 0). Note that, unlike the rotating

cold disk and warm disk, the symmetry of the non-rotating spheroid negates the need for

parameters φ, θ, and θ −∆θ, while the density profile’s dependence on a0 reduces r0,i’s use

to setting the maximum radius for placing particles.

3.4. Restricted N-Body Simulations

The simulations are carried out using a restrictedN -body approach (Pfleiderer & Sieden-

topf 1961; Toomre & Toomre 1972) in a Cartesian coordinate system. The use of a Cartesian

coordinate system is motivated by the format of the available observations: Choi et al. (2002)

photometric observations are defined in the x-y plane and Geha et al. (2006) velocity ob-

servations are defined in the z direction. We center our coordinate system on M31 and

define the x-y plane as the plane of the sky, with y pointing north, along a line of increasing

declination (DEC), and x pointing east, along a line of increasing right ascension (RA). The

positive z-axis, which is also centered on M31, is therefore along our line-of-sight pointing

away from us. By this definition, an object moving toward us is defined to have a negative

z-velocity, while an object moving away from us is defined to have a positive z-velocity.

The center of M31 lies at the center of this coordinate system (0, 0, 0). The spherical

symmetry of the bulge and the halo require no rotation, while the axisymmetry of the disk

requires a rotation of i = 77.5◦ around the x-axis followed by a θ = 37.7◦ rotation about the

z-axis. Thus, if we define a disk as edge on along the x-axis at angles of i = 90◦ and θ = 0◦

then the orientation of the M31 disk in the projected plane of the sky is given by: x′

y′

z′

 =

 cos i cos θ sin θ 0

− cos i sin θ cos θ 0

sin i 0 0

  x

y

z

 (23)

For computational purposes, the inverse of the matrix above is used to rotate each particle

into the frame of M31 (with the disk lying in the x-y plane) in order to compute the particle

acceleration due to the disk, and then rotated back into our coordinate system as defined

above.
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Fig. 4.— Schematic overview of the simulated interaction between a cold NGC 205 and

M31. In Step 1, the center of mass of NGC 205 is integrated back in time approximately

half an orbit. In Step 2, a cold disk representing the undistorted NGC 205 is created. In

Step 3, the undistorted disk is integrated forward in time in response to NGC 205’s and

M31’s potentials. In Step 4, a photometric and kinematic comparison is done between the

integrated system and the observed NGC 205 system.
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There are five major steps involved in the simulation. For each individual orbit, the

values of the unknown parameters described in § 3.1 are obtained from the genetic algorithm

as discussed in § 3.5. Each step in a simulated orbit is described below:

1. First, the center of mass (COM) of NGC 205 is integrated back in time approximately

half an orbit using a Bulirsch Stoer integration scheme (Press et al. 1986). The presence

of M31’s disk presents difficulties for performing straightforward calculations of the orbital

period. Hence, we approximate the orbital period as twice the circular velocity period of

NGC 205. Although this approximation is far from exact, we intentionally overcompensate

for the period to ensure that the satellite travels at least half an orbit or descends from a

reasonably large radii. If the integration time is longer than 6.8 Gyr the orbit is fixed to 6.7

Gyr, since such orbits are much longer than the dynamical time scale for NGC 205. Since

only the COM’s x and y positions are known precisely, the final z position and the velocity

vector (vx, vy, vz) must be taken from the genetic algorithm’s initial parameter space. The

acceleration is computed using a three-component potential model for M31 consisting of a

bulge, a disk and a halo as described in § 3.2. We set the required accuracy per time step to

one part in 107.

2. At this earlier time, we assume tidal distortion of NGC 205 has not yet taken place.

After successful integration back in time, the initial, undistorted NGC 205 galaxy is created

and populated with 1,000 mass-less test particles in a preselected configuration, as discussed

in § 3.3. The distribution of test particles is not intended to be a self consistent tracer of

the mass, rather, it is constructed to be a tracer of the expected surface brightness profile of

NGC 205 prior to its distortion.

3. Next, the undistorted system of particles is integrated forward in time to the present

day under the influence of both galaxies’ potentials. As discussed in § 3.2, we model NGC 205

as a spherically symmetric static potential and M31 as a three-component static potential.

The mass, M205, and Hernquist scale length, a205, used to construct NGC 205’s potential

are unknown parameters and are obtained from the genetic algorithm. We set the required

accuracy per particle per time step in our integration to one part in 107.

4. After the integration is complete, the final, simulated system is compared to the

known, observed system. The comparison involves a total of 6–7 tests, depending on the

model used for NGC 205. Although, individually, these tests report a probability measure-

ment, their true purpose is to provide information to the GA instructing it on how to improve

subsequent guesses. An outline of each test is provided in § 3.6.

5. Steps 1–4 are repeated until the desired number of orbits is reached. We then use a

genetic algorithm to improve our initial conditions and repeat the process until we can match
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our observations. For each orbit, parameters resulting in a goodness-of-fit value higher than

the previous value are recorded. Steps 1–5 are then repeated using a new guesses for the

free parameters.

3.5. The Genetic Algorithm (GA)

Our 10-dimensional parameter space discussed in § 3.1 contains approximately 1022 pos-

sible orbits. At an average of 6.25 CPU seconds an orbit for our simplest model, the cold disk,

an iterative search of the space would take on order 106 CPU Gyr. For this reason, we must

efficiently search the parameter space with an optimization algorithm. We have chosen to

use the optimization technique invented by Holland (1975) called a genetic algorithm (GA)

for two pragmatic reasons. The first is that GAs have the distinct advantage of not getting

stuck in local optima, a problem that plagues hill climbing techniques which exploit gradient

information. The second benefit is that GAs are reasonably effective at reducing the amount

of searching needed to converge on a solution in a given parameter space. Hence, GAs

are especially useful in problems where iterative searches are computational unreasonable.

These two features make genetic algorithms ideal for searching parameter spaces containing

an unknown distribution of local optima.

The inspiration behind the GA is biological evolution. The idea follows that evolution

is a process determined by chromosomes and natural selection. In the GA application,

an individual point in parameter space is equivalent to a chromosome, and the parameters

making up that chromosome are analogous to genes. As dictated by biology, evolution occurs

at the point of reproduction and individuals with genes advantageous to their species are more

likely to reproduce. Mutations of genes and recombination of chromosomes (crossover) can

result in offspring that are very different than their biological parents, and, if these mutations

and recombinations result in a higher level of success for the offspring, they become more

likely to reproduce. With each new generation, a new population is created and the old

population is replaced.

There are three general modules that define and drive all genetic algorithms. These are

the Evaluation, Population and Reproduction Modules. Within any particular application,

the details of each module can vary. The purpose of the Evaluation Module is to determine

the fitness of a particular individual. Fitness is a measure of an individual’s feasibility as a

solution to the problem at hand and is commonly determined by a mathematical function.

The fitness is the only information fed into the genetic algorithm and is used in the Population

and Reproduction Modules. At any given time, the Population Module hosts the current

population of individuals, called a generation. Encoded in this module are the existing



– 27 –

population’s chromosomes and the methods used for creating new generations (e.g. how

many children are produced by a set of parents). The method of parent selection (e.g.

roulette-wheel, stochastic tournament, deterministic sampling) is often contained in this

module as well, but can alternatively be a component in the Reproduction Module. The

Population Module begins by creating an initial population (the first generation), which

generally consists of random, single-point guesses in parameter space. The success of a

given GA run only weakly depends on this initial first guess. The successive replacements of

this population by the Reproduction Module results in new generations. The Reproduction

Module determines the method by which new chromosomes will be created. The amount of

mutation and the method of crossover (the way the parent’s chromosomes are combined to

produce offspring) are defined in this module. The resulting offspring becomes an individual

of the next generation (Goldberg 1989; Davis 1991).

We use a micro genetic algorithm (micro-GA) driver designed by Carroll (2001) which

employs a tournament selection scheme with a shuffling technique to select individuals for

reproduction. Carroll’s micro-GA is characterized by a small population (5 individuals),

with uniform crossover, elitism and no mutation or niching. The algorithm works by first

arranging individuals in the current population in some arbitrary order (shuffling). Two

individuals are then randomly chosen from the population, and the fittest amongst the pair

is selected as a parent (tournament selection). Tournament selection is then repeated to

select the second parent. Next, genes are picked at random from the first or second parent

to create an offspring (uniform crossover), which subsequently becomes a new member of

the next generation. The process of selection and reproduction continues until the new

generation is completely populated. In Carroll’s micro-GA configuration, elitism ensures

that the best individual from the previous generation is replicated into the new generation

and the absence of niching means that only one local optima can exist in a population at

any given time.

3.6. Measuring Fitness (The Evaluation Module)

As previously discussed, the only interface between the GA and our N -body simulation

is the Evaluation Module, which determines the fitness of an individual. For our problem, we

use the photometric and kinematic observations discussed in § 2 to measure the fitness of each

simulated orbit. Since the fitness is a solitary number fed into the genetic algorithm, each

simulated galaxy has its photometric and kinematic goodness-of-fit measurements weighted

and combined into a single value. The goal of the fitness value is to tell the GA when

and how to improve. Hence, it is not advantageous to use a straightforward χ2 method
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(especially since the simulated photometric and kinematic results are dependent on the same

parameters), it is, in fact, more effective to weight and combine individual tests that measure

the qualities of a given orbit. In our simulation, a total of 6–7 tests are used. After testing

many orders and weighting schemes we find the following configuration to be most effective:

two-dimensional two-sided Kolmogorov-Smirnov (2DKS) test with a weight of 1%(§ 3.6.1),

slope measurement with a weight of 9% (§ 3.6.2), weighted velocity profile χ2 probability

with a weight of 18% (§ 3.6.3), and surface brightness profile χ2 probabilities with weights of

18% each (§ 3.6.4). The weights and criteria for each of these evaluations is discussed below

and summarized in Table 3.
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Table 3. Determining Fitness, F

Test Passing Test’s Fitness if Fitness if

Criteria Weight Orbit Fails Test Orbit Passes Test

1. 2DKS Probability ≥ 0.01 1% F = P(D > observed)a f1 = 0.01

2.b Slope, m 0.0 ≥ m ≥ −0.80 9% F = f1 + 0.09δ|
mmid

m−mmid
|c f2 = f1 + 0.09

(in km s−1 arcsec−1)

3. Weighted Velocity ≥ 10−10 18% F = f2 −
1.0

log[Q(χ2|ν)]
d f3 = f2 + 0.10 + 0.08×Q(χ2|ν)

χ2 Probability

4. Surface Brightness F = f3 + f4 + f5 + f6 + f7

χ2 Probabilities:

Radial ≥ 10−10 18% f4 =
−1.0

log[Q4(χ2|ν)]
f4 = 0.10 + 0.08×Q4(χ2|ν)

Angular ≥ 10−10 18% f5 =
−1.0

log[Q5(χ2|ν)]
f5 = 0.10 + 0.08×Q5(χ2|ν)

Weighted Radial ≥ 10−10 18% f6 =
−1.0

log[Q6(χ2|ν)]
f6 = 0.10 + 0.08×Q6(χ2|ν)

Weighted Angular ≥ 10−10 18% f7 =
−1.0

log[Q7(χ2|ν)]
f7 = 0.10 + 0.08×Q7(χ2|ν)

aWhere the 2DKS probability P(D > observed) is given in Press et al. (1986)

bUsed only in the exponential disk models. For the non-rotating spheroid model, f2 is set to 0.10

cWhere mmid = −0.40 km s−1 arcsec−1 and δ =

8><>:
0, if |

mprev −mmid

m−mmid
| > 1

1, if |
mprev −mmid

m−mmid
| ≤ 1

dWhere Q(χ2|ν) is the χ2 probability function from Press et al. (1986)
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3.6.1. Two-Dimensional Two-Sided Kolmogorov-Smirnov (2DKS) Test

Our first evaluation uses the two-dimensional two-sided Kolmogorov-Smirnov (2DKS)

test (Press et al. 1986). The observed surface brightness profile of NGC 205 system is

modeled as a distribution of particles placed as tracers of the projected surface brightness

profile. The number of particles in the ‘observed’ distribution is chosen such that it equals

the number of particles in the simulated distribution. The 2DKS test probability, P(D>obs),

is measured using the statistic from Numerical Recipes (Press et al. 1986).

Simulations resulting a probability ≥ 0.01 are given a fitness value of 0.01 and allowed

to proceed to the next test. Those with values < 0.01 return a fitness value equal to the

2DKS probability value. The 2DKS test fitness value is thus,

Fitness = min[P(D>obs), 0.1] (24)

A weight of only 1% (or a maximum fitness value of 0.01) is given to the 2DKS test because

it is most effective at recognizing bad fits, rather than quantifying good fits. That is, the

two disadvantages of this test are that it has only a 0.20 significance level and a bias towards

the center (since this is where most of the particles are located).

3.6.2. Interior Velocity Slope (Disk Models Only)

We ensure that NGC 205 has the correct tidally undistorted central semi-major axis

velocity profile by using the velocity slope interior to ∼ 270′′ for the second fitness evaluation.

This test is performed only on the disk models, since the non-rotating spheroid contains no

preservable internal rotation. To determine the simulated semi-major axis velocity profile

(and measure its slope), the minimum distance between each test particle and the S-shaped

major axis of NGC 205 is computed. The slit-masks used by Geha et al. (2006) to observe

NGC 205’s velocity profile are adjacent to the semi-major axis, with dimensions 16′ (3.8

kpc) long by 4′ (1.0 kpc) wide. Based on the Geha et al. (2006) collection method, simulated

particles whose perpendicular distance to the major axis is less than 250′′ (1 kpc) are selected,

and their velocities are binned and average with neighboring particles to create a simulated

velocity profile. The radial size of each velocity bin along the semi-major axis is roughly 1′

(0.24 kpc).

The allowed slope (m) range is determined from Geha et al. (2006) velocity observations

of NGC 205 (see § 2.2). We set a generous slope range for our simulations of −0.80 km s−1

arcsec−1 to 0.0 km s−1 arcsec−1 (see Figure 3), corresponding to a −20 km s−1 kpc−1 to 0.0

km s−1 kpc−1 gradient, if NGC 205 lies at a distance of 824 kpc. The significance level is
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chosen such that the slope has the maximum range to vary, without ever going positive, and

corresponds to 1.83σ.

If the slope falls within the range specified above, it is given a probability of 1 and

a weight of 9% (or a value of 0.09). This is then added to the 2DKS result of 0.01 (for

a total fitness value of 0.10) and the code proceeds to the next test. If it does not fall

within the range, it is compared with the slope of a previous run in order to determine if

the GA is improving and assigns a fitness value. Improvement is defined by how the inner

slope is changing with respect to previous orbits and is symbolized by the parameter δ. The

parameter δ is set equal to 1 if the absolute value of the slope minus the observationally best

fit slope of −0.40 km s−1 arcsec−1 is less than the previous orbit’s value (i.e. |mnew− (−0.40

km s−1 arcsec−1)| < |mprev− (−0.40 km s−1 arcsec−1)|), and is otherwise set equal to 0. The

fitness value at this step is thus given by,

Fitness =


0.10, if −0.8 ≤ m ≤ 0.0 km s−1 arcsec−1

0.01 + 0.09δ

∣∣∣∣ −0.40

m− (−0.40)

∣∣∣∣ , otherwise
(25)

This results in a minimum fitness value of 0.01 for a slope of ∞, and a maximum fitness

value of 0.10 for a slope very close to 0.0 km s−1 arcsec−1 or 0.80 km s−1 arcsec−1. If,

instead, the absolute value of the slope minus the best fit slope is greater than the previous

orbit’s value (i.e. |mnew − (−0.40 km s−1 arcsec−1)| > |mprev − (−0.40 km s−1 arcsec−1)| ,

then the parameter δ = 0 and the GA returns a fitness value of 0.01. The ultimate goal of

this evaluation is to inform the GA if it is improving on the internal velocity profile. In the

case of the non-rotating spheroid, the Fitness is automatically set to 0.10 before proceeding

to the next test.

3.6.3. Weighted Semi-Major Axis Radial Velocity Profile

If the 2DKS test and central slope requirements are satisfied, a weighted χ2 statistic

is determined for the semi-major axis velocity profile and a probability Q inferred. Simi-

lar to the method outlined in § 3.6.2, simulated particles with a perpendicular distance to

NGC 205’s semi-major axis less than 250′′ (1 kpc) are collected and binned. The only dif-

ference is that the radial length of the velocity bins are slightly larger than those used to

measure the slope. Each bin is chosen to be in accordance with those used by Geha et al.

(2006), resulting in an average bin width of approximately 2′ (0.48 kpc).

The χ2 weights are constructed so that more weight is given to the tidally distorted

regions beyond ∼ 270′′. Ergo, this externally weighted velocity profile compliments the
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interior velocity slope discussed in § 3.6.2 to provide a complete description of the semi-

major axis velocity profile. We use the weighting function,

w(r) =


1
2
exp

[
r − r1/2

∆

]
if r < r1/2

1− 1
2
exp

[
r1/2 − r

∆

]
if r ≥ r1/2

(26)

where ∆ determines steepness of the function, and r1/2 corresponds to the semi-major axis

distance at which the weight is equal to 1
2
. In our model, we set ∆ = 50 and r1/2 = 500′′ in

order to produce χ2 weights that turn on at ∼ 270′′ and rise rapidly. Since the weights are

discretely sampled in accordance with Geha et al. (2006) bins, we normalize the weights to

the number of available bins,

wi =
N × w(ri)

N∑
i=1

w(ri)

(27)

where ri is the semi-major axis value corresponding to the center of each velocity bin, and

N is the total number of bins. These weights are then used to determine the χ2 statistic,

χ2 =
N∑

i=1

wi(Si −Oi)
2

σ2
i

(28)

where Si is the average radial velocity found by the simulation in the ith bin, and both Oi

and σi are the observed average radial velocity and error, respectively, in the ith bin.

Once the χ2 value is obtained, its statistical significance can be determined using the χ2

probability function, Q(χ2|ν) (Press et al. 1986), where the degrees of freedom, ν, is given

by N − 1. If the weighted radial velocity profile probability is ≥ 10−10 it is considered an

adequate fit and a value of 0.1 + 0.08×probability is added to the slope and 2DKS fitness’.

The code then proceeds to the next set of tests. However, if the weighted radial velocity

profile probability is < 10−10, then a new fitness is computed by subtracting the inverse

logarithm of the probability from the slope and 2DKS fitness’. So, based on the probability,

the orbit has an updated fitness value of,

Fitness =


f3 ≡ 0.2 + 0.08×Q(χ2|ν), if Q ≥ 10−10

0.10− 1.0

log[Q(χ2|ν)]
, if Q < 10−10

(29)

This results in a minimum fitness value of 0.10 for a Q(χ2|ν) probability of 0, and a maximum

fitness value of 0.28 for a Q(χ2|ν) probability of 1. The contribution of the weighted radial

velocity profile test to the the total fitness is 18%.
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3.6.4. Weighted & Unweighted Radial & Angular Brightness Profile

If the previous three tests (2DKS, slope, weighted radial velocity profile) are satisfied, the

weighted and unweighted χ2 statistics for the projected surface brightness profile are obtained

and probabilities, Q, inferred. Since NGC 205 is undergoing tidal distortion, information

from both the radial and angular profiles can be used as constraints. It is advantageous to

look at the weighted and unweighted, radial and angular profiles independently since they

each provide unique information about the satellite’s orbit. That is, the weighted χ2 statistics

give information about the exterior, tidally distorted regions of the satellite, whereas the

unweighted χ2 statistics inform about the interior, undistorted regions of NGC 205. Likewise,

the radial profile reveals the extent that the satellite is being compressed or expanded, while

the angular profile describes the twisting and elongation of NGC 205.

In our simulation, mass-less test particles are used as tracers of surface brightness. The

weighted and unweighted angular and radial distribution of test particles is compared with

the surface brightness profile given in Figure 2, which uses the data from Choi et al. (2002)

in the range 100′′ to 672′′ and our fitted exponential surface brightness profile interior to

100′′ and exterior to 672′′. In addition to this surface brightness profile, we use the position

angles and ellipticities measured by Choi et al. (2002) from 100′′ to 672′′. The position angle

and ellipticities of the isophotes internal to 100′′ and external to 672′′ are held fixed, since

interior to this we have removed the nucleus and exterior to this the surface brightness and

sky become comparable.

For the χ2 tests, we step in semi-major axis units of 94′′ (∼ 0.38 kpc) and in angular

units of 9◦. We measure out to a maximum semi-major axis distance of 31.2′ (∼ 7.5 kpc)

and use the center of each areal bin to determine the corresponding surface brightness. Since

our semi-major axis steps are not coincident with those of Choi et al. (2002) isophotes, we

interpolate to obtain an intermediate ellipticity and position angle that is complementary

to our step. The unweighted radial surface brightness profile of the simulated distribution is

then found by summing the number of tracer particles within each predetermined isophotal

annulus, while the unweighted angular surface brightness profile is measured by totaling the

number of tracer particles contained within each angular beam. The unweighted χ2 statistic

for both the radial and angular surface brightness profiles can then be computed using Eqn

28, setting each weight wi equal to 1, normalizing our observed distribution Oi to total the

number of tracer particles used in the simulation, and setting σ2
i equal to Oi, the number of

expected particles in the bin. For the weighted χ2 tests, the same formula is followed, except

that the weighting function given by Eqn 26 is used to determine wi.

Each of the 4 surface brightness profile tests discussed above are evaluated independently

and combined to update the GA fitness. Similar to the velocity profile test in § 3.6.3, tests
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with probabilities ≥ 10−10 are considered reasonable fits and are assigned a value of 0.1 +

0.08×probability. Profiles resulting in probabilities < 10−10 are designated bad fits and

assigned a value of −1.0/log[Qj(χ
2|ν)]. The updated fitness then becomes,

Fitness = f3 +
7∑

j=4

fj

fj =


0.10 + 0.08×Qj(χ

2|ν), if Qj ≥ 10−10

−1.0

log[Qj(χ2|ν)]
, if Qj < 10−10

(30)

where the j index specifies which of the 4 surface brightness profile tests, and f3 refers to the

weighted velocity profile fitness from Eqn 29. Hence, each χ2 test can contribute a maximum

of 18% to the total fitness, resulting in a maximum fitness value of 1. Once the fitness of a

orbit has been determined, the GA can use the information to create new, improved orbits.

4. RESULTS

In this section, we present the genetic algorithm’s results for the three NGC 205 models

outlined in § 3.3: the rotating cold disk (§ 4.1), the rotating warm disk (§ 4.2) and the non-

rotating hot spheroid (§ 4.3). We perform 1000 GA runs on each model (with different initial

random number seeds for each run) in order to thoroughly explore the parameter space and

expose possible degeneracies. Each GA run consists of 1000 generations of 5 individual orbits

and produces a best orbit (highest fitness) from these 5000 orbits. Hence, for each model,

5× 106 orbits are explored and 103 best orbits are returned. Below, the resulting direction

of NGC 205’s approach on the sky plane, parameter values and single best orbit are given

for these three models.

4.1. Rotating Cold Disk

We initialize NGC 205 as a rotating, cold exponential disk of mass-less test particles,

serving as tracers of surface brightness. The resulting direction of approach (§ 4.1.1), pre-

ferred parameter values (§ 4.1.2) and best orbit (§ 4.1.3) for the cold disk simulations are

outlined below.

4.1.1. Direction of NGC 205’s Approach (Cold Disk)
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Fig. 5.— Cold Disk Model. Direction of approach for NGC 205 modeled as an initially

rotating, cold disk. (a) The best orbit from each of the 1000 GA runs. (b) Orbits with

additional photometric, kinematic and fitness constraints. Included is the resulting best

orbit from a single GA run with 3000 particles (dashed line). (c) The sky projected (x− y)

orbits from the shaded region of the histogram. Also plotted are M31’s bulge and disk at

two scale radii (subtending 5′ and 45′, respectively), an approximation of McConnachie et al.

(2004) stellar arc and two surface brightness isophotes, one at 270′′ (the onset of NGC 205’s

tidal distortion) and the other at 19.′77 (NGC 205’s tidal radius). Note, none of these orbits

trace the stellar arc observed in M31’s northwest quadrant. (d) The line-of-sight (x − z)

orbits from the shaded region of the histogram. Also included are M31’s bulge and disk at

two scale radii and the investigated z values (2− 76 kpc).
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Figure 5 shows histograms of NGC 205’s varying directions of approach on the plane of

the sky and selected spatial projections for the cold, rotating disk model. The histogram in

Figure 5a depicts the best orbit from each of the 1000 GA runs. Even without any further

constraints, a clear directional preference emerges from the 1000 orbits. The histogram peaks

at 148 orbits with NGC 205 advancing from the west (W), followed closely by 140 orbits

from the west-northwest (WNW) and 130 orbits from the northwest (NW). Of these 1000

orbits, 752 are bound to M31, 500 are prograde, 280 are retrograde and 220 are radial (with

radial orbits defined by arccos |r̂ · v̂| ≤ 5◦) .

Figure 5b shows orbits with additional photometric, kinematic, and fitness constraints.

The outlined histogram imposes that the weighted velocity χ2 probability ≥ 10−10 and that

each of the 4 surface brightness χ2 probabilities return values ≥ 0.1 (§ 3.6.3–§ 3.6.4). This

constraint significantly reduces the initial 1000 orbits to 32 orbits and returns a direction

of approach that lies somewhere between the north-northwest (NNW) and west (W), with

the peak lying in the NW. Furthermore, none of these orbits are retrograde (in fact, none

of the retrograde orbits have a fitness > 0.25). The enclosed shaded region further imposes

the condition that fitness ≥ 0.86, a value selected to be just below that of the top 10 orbits

(or 1%). This results in a reduction from 32 orbits to 9, meaning that one of the top 10

orbits fails to satisfy all the imposed photometric and kinematic constraints. The remaining

directions of approach continue to peak in the NW, with only W approaches now ruled

out. Hence, the directional preference initially suggested by the histogram of 1000 orbits is

reinforced by the addition of photometric, kinematic and fitness requirements.

More importantly, these constraints rule out other possible orbits for the cold disk model.

This includes McConnachie et al. (2004) favored 1◦ long stellar arc-like feature (observed in

the northwest quadrant of M31) as a tidal stellar stream originating from NGC 205. Modeling

this trail as tidal debris from the satellite suggests encroachment from somewhere in between

the north-northeast (NNE) and east (E) region (22.5◦ to 90◦) on the plane of the sky. While

21% of the orbits from the 1000 GA runs fall within this 4-bin region, we find that these

orbits all have poor angular surface brightness distributions (i.e they cannot simultaneously

match both a weighted and unweighted angular χ2 probability constraint of 0.1). This result

indicates that orbits approaching from the NNE through E are ruled out as solutions by the

observed isophotal twisting in NGC 205 (§ 2.1).

To further test this conclusion, we perform a single cold disk GA run with 3000 particles.

While numerous GA runs with > 1000 particles are too expensive for our purposes, a single

GA run allows us to check our results against a more complex system. The 3000 particle

GA run returns a direction of approach from the NNW, an orbit in qualitative agreement

with our 1000 particle runs. This result is denoted in Figure 5b with a dashed line.
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Fig. 6.— Cold Disk Model. Plotted are the parameter values vs. fitness from the 1000

GA runs when NGC 205 is modeled as a rotating, cold disk. Each point corresponds to

the best orbit from an individual GA run and a particular initial configuration (structure,

dynamics, orientation) of the progenitor. The included lines denote passing criteria for the

various fitness tests: slope test (Fitness ≥ 0.1), weighted velocity χ2 test (Fitness ≥ 0.2),

all five χ2 tests (Fitness ≥ 0.6), top 10 (1%) orbits (red line, Fitness ≥ 0.86), and nine

constrained orbits (highlighted in red). Orbits that fail are poor fits to photometry and/or

kinematics and reside below the Fitness = 0.6 line. Also included are the parameter values

of the resulting best orbit from a single GA run with 3000 particles (dashed line).
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The plots at the bottom of Figure 5 show the trajectories of the constrained nine orbits

corresponding to the shaded region in Figure 5b. All nine orbits have very large tangential

motions and are not bound to M31. Included in the x − y sky projection plot (Figure 5c)

are tracers of the nine orbits, an approximation of McConnachie et al. (2004) stellar arc,

M31’s bulge and disk at two scale radii (subtending 5′ and 45′, respectively), and two surface

brightness isophotes, one at 270′′ corresponding to the onset of NGC 205’s tidal distortion and

the other at 19.′77 indicating NGC 205’s tidal radius. As discussed, none of the constrained

orbits trace the stellar arc observed in the northwest quadrant of M31. Included in the x− z
line-of-sight plot (Figure 5d) are tracers of the nine orbits, M31’s bulge and disk at two scale

radii, and the range of allowed z values (2–76 kpc). All nine orbits converge at distances

very close to M31 and follow roughly similar trajectories. Furthermore, the nine orbits begin

on nearly radial courses with 0◦ < µ < 1.5◦, where µ is the angle between ~r and ~v, the

position vector from the center of NGC 205 to M31 and the velocity vector of NGC 205,

respectively. Ergo, the radial paths of these nine simulated satellites precludes prograde or

retrograde encounters.

4.1.2. Preferred Parameter Values (Cold Disk)



– 39 –

 

0.5 1.0 1.5 2.0 2.5
scale radius (kpc)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

0.6

0.86

All 1000 GA runs

0.5 1.0 1.5 2.0 2.5
scale radius (kpc)

0

50

100

150

N
o.

 o
f 

O
rb

its

Fitness > 0.60

0.5 1.0 1.5 2.0 2.5
scale radius (kpc)

0

20

40

60

80

100

N
o.

 o
f 

O
rb

its

 

0 200 400 600
magnitude V (km/s)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

0.6

0.86

All 1000 GA runs

0 200 400 600
magnitude V (km/s)

0

10

20

30

40

50

60

N
o.

 o
f 

O
rb

its

Fitness > 0.60

0 200 400 600
magnitude V (km/s)

0

10

20

30

40

50

N
o.

 o
f 

O
rb

its

 

20 40 60
Z (kpc)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

0.6

0.86

All 1000 GA runs

20 40 60
Z (kpc)

0

20

40

60

80

100

N
o.

 o
f 

O
rb

its

Fitness > 0.60

20 40 60
Z (kpc)

0

20

40

60

N
o.

 o
f 

O
rb

its

Fig. 7.— Cold Disk Model. Shown here are three parameters, for the rotating, cold disk

model, that are well constrained by the GA. From top to bottom: initial scale length r0,i,

velocity magnitude |v| = (v2
x + v2

y + v2
z)

1/2, and line-of-sight distance z. From left to right:

parameter values vs. Fitness for the 1000 GA runs, histograms and fitted Gaussians (except

z) for all 1000 GA runs, and histograms and fitted Gaussians for orbits satisfying Fitness

≥ 0.6. Orbits with Fitness ≥ 0.6 give r0,i = 128 ± 10′′, |v| = 414 ± 94 km s−1, z = 11 ± 9

kpc. Also included are the parameter values of the resulting best orbit from a single GA run

with 3000 particles (dashed line).
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Figure 6 shows the evolved parameter values resulting from the 1000 cold disk GA

runs. Each best orbit’s parameter and corresponding fitness are plotted. Since the fitness

is determined by combining numerous tests, the line illustrating passing criteria for each

fitness step is also included, with the sole exception of the 2DKS test for which all 1000

orbits quantitatively pass. The nine constrained orbits from Figure 5b and the cutoff fitness

value line for the top 10 orbits are highlighted in red. Additionally, the resulting best orbit’s

parameter values from the 3000 particle GA run are included (dashed line).

The GA’s preference for certain parameter values emerges in Figure 6. The most notable

concentration is in the initial scale radius r0,i of NGC 205, shown in detail in Figure 7 (top

row). The 1000 simulations converge at r0,i = 129±12′′ (0.51±0.05 kpc), with orbits passing

all five χ2 tests (Fitness ≥ 0.6) at r0,i = 128±10′′ (0.51±0.04 kpc) and the constrained nine

orbits (highlighted in red) focused at 148 ± 7′′ (0.59 ± 0.03 kpc), a value equivalent to the

satellite’s present scale radius. This implies that a large portion of NGC 205 is unaffected

by tides and the internal regions of the satellite have experienced little, if any, distortion.

The remaining parameters experience a greater amount of scatter. However, definite trends

still exist in the data. For example, the simulations favor orbits with very large velocities of

414 ± 94 km s−1 (middle row of Figure 7, Fitness ≥ 0.6), preferentially moving NGC 205

towards the south (vy = −346 ± 385 km s−1) and to the east (vx = 333 ± 89 km s−1). In

addition, the GA prefers z distances very close to M31 with z = 11 ± 9 kpc (bottom row

of Figure 7, Fitness ≥ 0.6). An orbit’s fitness beyond this distance declines rapidly. Also

included in Figure 7 are the resulting best orbit’s r0,i, |v| and z values from the 3000 particle

GA run (dashed line). Note that these values are in qualitative agreement with the 1000

particle GA runs, with a slightly higher |v| value that is comparable to the velocities of the

nine constrained orbits.

Conversely, some of the parameters cannot be further reduced by the simulations. The

huge scatter in the radial velocity, vz, indicates that that the GA is unable to constrain

this value beyond current observations (Figure 6, middle row, first column). This result is

not surprising since the observed error on vz is quite small. Additionally, the GA is unable

to reach convergence for the satellite’s mass, M205, and Hernquist scale length, a205. One

explanation for this is that significant degeneracies might exist for M205 and a205 in the

parameter space. A second possibility is that perhaps the photometric and kinematic fitness

tests are not as sensitive to M205 and a205 as they are to the other parameters. Hence, the

GA both produces inconclusive results for M205 and a205 and does not further reduce the

observed error on vz. However, it is able to tightly constrain NGC 205’s initial scale radius

and place more general bounds on the remaining 5 parameters.
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4.1.3. Best Orbit (Cold Disk)
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Fig. 8.— Cold Disk Model. The resulting best orbit, with a fitness of 0.90, from the 1000

GA runs when NGC 205 is modeled as a rotating, cold disk. (a) Illustration of the orbit on

the sky plane (black) + observations of M31, NGC 205 and the stellar loop (red). (b) Orbit

in the x − z plane (black) + allowed z values (vertical red). (c) Integrated mass-less test

particles (black) + Choi et al. (2002) isophotes (red). (d) Simulated radial velocity profile

(black) + Geha et al. (2006) corresponding radial velocity profile (red). (e) Simulated velocity

dispersion + Geha et al. (2006) corresponding dispersion profile (red). Note, the open circles

in the simulated velocity dispersion profile denote radii bins with velocity distributions that

cannot be fit with a Gaussian. Instead, the standard deviation of the distribution is given.

The solid black line denotes the results of a simulation using identical parameter values and

5500 test particles.
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Fig. 9.— Cold Disk Model. Past, present and future projections of NGC 205 when the

satellite is modeled as a initially rotating, cold disk. The left panel shows the predictions in

the plane of the sky. The middle panel views the same orbit in the x − z plane. Note that

the apparent kink in the orbit is merely a resolution effect and not indicative of an abrupt

change in velocity. The positions are given at times −338 Myr, −169 Myr, present, 169 Myr

and 338 Myr. The panel on the right is a zoomed in view of NGC 205 at 338 Myr on the

plane of the sky.
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Figure 8 shows the resulting best orbit from the 1000 GA runs using the cold disk

model. This best orbit approaches from the NW, is unbound to M31 (with |v| = 546 km s−1

and vesc = 480 km s−1), and has a fitness value of 0.90. Figure 8a displays the simulated

galaxy and its trajectory on the plane of the sky (in black). Also included (in red) are

M31’s bulge and disk, at 2rb and 2Rd, and the predicted particle distribution for NGC 205,

derived from Choi et al. (2002) isophotes and our surface brightness profile (see § 2, Figure

2). Figure 8b shows this same orbit in the x−z plane, with the addition of a vertical red line

denoting the allowed z parameter values (2 − 76 kpc). Shown in the bottom plots are the

simulated galaxy’s velocity dispersion (circles) and performance on the five χ2 tests, with

Choi et al. (2002) isophotes and Geha et al. (2006) velocity profile + errors depicted in red.

The simulated surface brightness χ2 tests result in probabilities of 0.979, 0.856, 0.999 and

0.852 for the radial, angular, weighted radial and weighted angular tests, respectively, and in

a χ2 probability of 6.0×10−10 for the weighted velocity profile. Note that while the weighted

velocity profile probability seems quite low, it satisfies the goal of the simulation by matching

the turnover and reversal in the semi-major axis velocity profile. Furthermore, although this

satellite began as a purely rotating disk with no dispersion, after the simulated interaction

with M31 a Gaussian fit to the combined velocity distribution for all particles along the

semi-major axis is 3 km s−1. Even though this simulated average dispersion is much lower

than the observed average dispersion of 42 km s−1 (Geha et al. 2006), its presence indicates

that some of the observed dispersion could have been tidally induced by M31. In order to

reduce the Poisson noise in the dispersion profile, we reran the orbit with 5500 particles.

The resulting 5500 particle Gaussian fitted velocity dispersion profile is given in Figure 8e

(solid black line). The parameter values of the 1000 particle orbit are M205 = 1.38×109M�,

vx = 369 km s−1, vy = −399 km s−1, vz = 52 km s−1, z = 6.3 kpc, r0,i = 0.6 kpc, φ = 90◦,

θ = −66◦, and a205 = 9.6 kpc. This orbit is projected to pass within ≈ 9 kpc of M31’s center

in the plane of M31’s disk. However, the radial path of the orbit precludes any sense of a

prograde or retrograde encounter.

Using these orbital parameters, we roughly predict the position of the satellite and its

particles at given points in time. Figure 9 illustrates the past, present and future predictions

for NGC 205 when it is modeled as a cold, rotating disk. The distribution of particles and

positions in space are given for times −338 Myr, −169 Myr, present, 169 Myr and 338 Myr.

The panel to the far right in Figure 9 shows NGC 205 in the plane of the sky at 338 Myr. The

simulated satellite experiences a significant amount tidal distortion after passing through the

disk of M31.
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Fig. 10.— Warm Disk Model. Same as Figure 5 but for NGC 205 modeled as a warm disk

with both rotational and anisotropic velocities. Note that the directions of approach on the

plane of the sky are similar to those from the cold disk models.
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4.2. Rotating Warm Disk

This section is identical to § 4.1 but for NGC 205 modeled as a rotating, warm exponen-

tial disk of mass-less test particles supported by a combination or rotational and anisotropic

velocities.

4.2.1. Direction of NGC 205’s Approach (Warm Disk)

In Figure 10a a distinct directional preference emerges. The histogram peaks at 228

orbits with NGC 205 advancing from the northwest (NW), followed by 151 orbits from the

north-northwest (NNW) and 89 orbits from the west-northwest (WNW). Almost half the

orbits are contained within these three directional bins. Furthermore, these directions of

approach reinforce those from the 1000 cold disk model runs, which peaked in the west (W).

Of these 1000 orbits, 808 are bound to M31, 233 are prograde, 593 are retrograde and 174

are radial.

Figure 10b shows an effective reduction of 1000 orbits to 5 and returns a direction of

approach lying somewhere between the north (N) and northwest (NW), with the peaks in

both the NW and NNW. Of these 5 orbits, 2 are prograde, 1 is retrograde, and 2 are radial.

The shaded region enclosed within the histogram further imposes that the Fitness ≥ 0.76, a

value selected to be just below that of the top 10 orbits (or 1%). This constraint eliminates

the retrograde orbit and reduces the 5 orbits to 3, indicating that 7 of the top 10 orbits fail to

satisfy all the imposed photometric and kinematic constraints given above. The remaining

directions of approach continue to peak in the NNW, with only N approaches now ruled out,

a result similar to that of the cold disk model’s. Hence, the initial directional preference

from the 1000 orbits histogram is reinforced with the addition of photometric, kinematic

and fitness constraints.

These restrictions rule out other possible orbits, including those tracing the stellar arc-

like feature seen to the north of M31. The warm disk model simulations place 15% of the 1000

GA orbits in bins NNE through E. However, only 2 of these 153 orbits meet both a weighted

and unweighted angular χ2 constraint of 0.1 and fail to meet a weighted and unweighted

radial χ2 constraint of 0.1. As with the cold disk model, orbits tracing the observed stellar

arc are ruled out as solutions by NGC 205’s photometric profile.

4.2.2. Preferred Parameter Values (Warm Disk)
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Fig. 11.— Warm Disk Model. Same as Figure 6 but for the warm disk model with only

three constrained orbits, highlighted in red.
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Fig. 12.— Warm Disk Model. Same as Figure 7 but for the warm disk model. Orbits with

Fitness ≥ 0.6 give r0,i = 109 ± 11′′, |v| = 368 ± 79 km s−1, z = 11 ± 8 kpc, values nearly

identical to those from the cold disk models.
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Preferences by the GA for various parameter values can be seen in Figure 11. As with

the cold disk model, the most notable focus is in the initial scale radius r0,i of NGC 205,

shown in detail in Figure 12 (top row). Both the 1000 simulations and the orbits passing

all five χ2 tests (fitness ≥ 0.6) converge at r0,i = 108 ± 11′′ (0.43 ± 0.04 kpc), with the

constrained three orbits (highlighted in red) focused at 113 ± 13′′ (0.45 ± 0.05 kpc). These

GA selected scale radii are close to the satellite’s present scale radius of 148′′ (0.59 kpc),

which implies that the internal regions of the satellite have experienced very little distortion.

There is a greater amount of scatter in the remaining parameters, however, distinct trends

still exist in the data. Shown in the middle row of Figure 12, orbits with very large velocities

of 368 ± 78 km s−1 (Fitness ≥ 0.6) are favored, moving NGC 205 primarily towards the

southeast (vx = 229± 54 km s−1 and vy = −312± 132 km s−1). In addition, the GA prefers

z distances very close to M31 with z = 11± 8 kpc (bottom row of Figure 12, Fitness ≥ 0.6).

Beyond this distance an orbit’s fitness declines rapidly.
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Fig. 13.— Warm Disk Model. Same as Figure 8 but for the warm disk model whose resulting

best orbit has a fitness of 0.87.
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However, some parameters are not well constrained by the simulations. As with the cold

disk model, the radial velocity vz contains a significant amount of scatter amongst the allowed

parameter values. In addition, the satellite’s mass, M205, and Hernquist scale length, a205,

are also unresolved parameters. Hence, as with the cold disk results, the GA both produces

inconclusive results for M205 and a205 and does not further reduce the observed error on vz.

However, it is able to tightly constrain NGC 205’s initial scale radius and place more general

bounds on the remaining five parameters, which also happen to closely match the values

from the cold disk simulations.

4.2.3. Best Orbit (Warm Disk)
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Fig. 14.— Warm Disk Model. Same as Figure 9 but for the warm disk model.
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Figure 13 displays the resulting best orbit from the 1000 GA runs for the warm disk

model. This orbit approaches M31 from the NNW, is unbound (with |v| = 514 km s−1

and vesc = 475 km s−1), and has a fitness of 0.87. The simulated surface brightness χ2

tests result in probabilities of 0.730, 0.994, 0.999 and 0.657 for the radial, angular, weighted

radial and weighted angular tests, respectively, and in a χ2 probability of 5.0 × 10−10 for

the weighted velocity profile. This satellite is initialized with a radial dispersion at one scale

length of σR=r0,i
= 3.7 km s−1 and a vertical dispersion of σz=r0,i

= 5.5 km s−1. After the

simulated interaction with M31, the semi-major axis velocity profile contains an average

observable dispersion of 6 km s−1 (which is slightly greater than its initial dispersion), with

a maximum dispersion of 4 km s−1 at a radius of 2.1 kpc. The parameter values of this orbit

are M205 = 1.0× 109M�, vx = 269 km s−1, vy = −435 km s−1, vz = 52 km s−1, z = 7.2 kpc,

r0,i = 0.5 kpc, φ = 83◦, θ = −77◦, and a205 = 7.5 kpc. As with the cold disk model, this

orbit is projected to pass within ≈ 9 kpc of M31’s center in the plane of M31’s disk. Also,

the radial path of this orbit precludes any sense of a prograde or retrograde encounter.

Figure 14 illustrates the past, present and future predictions for NGC 205 when it is

modeled as a warm disk supported by rotation and anisotropic velocities. The distribution

of particles and positions in space are given for times −338 Myr, −169 Myr, present, 169

Myr and 338 Myr. The panel to the far right in Figure 14 shows NGC 205 in the plane of the

sky at 338 Myr. The simulated satellite experiences a significant amount of tidal distortion

after passing through the disk of M31 .

4.3. Non-Rotating Hot Spheroid

This section is similar to § 4.1 & § 4.2 except that here NGC 205 is modeled as a non-

rotating, hot spheroid of mass-less test particles supported by isotropic velocities. Since this

configuration of particles has increased velocity dispersion (compared to the disk models),

we include and additional discussion about our ability to match this observed component in

§ 4.3.4.
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Fig. 15.— Hot Spheroid Model. Similar to Figures 5 and 10 but for NGC 205 modeled as a

non-rotating hot spheroid. For the spheroid model the unweighted photometric constraints

are set to 10−10, which are more relaxed than the disk models’ constraint of 0.1. Note that

the directions of approach on the plane of the sky are similar to those found for the disk

models.
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4.3.1. Direction of NGC 205’s Approach (Hot Spheroid)

In Figure 15 a clear directional preference is seen in the initial histogram of 1000 or-

bits. The histogram peaks at 432 orbits with NGC 205 advancing from the north-northwest

(NNW), followed by 178 orbits from the north (N). More than half the orbits are contained

within these two directional bins. Furthermore, these directions of approach reinforce those

from the disk model runs, which peaked in the W (cold) and NW (warm). Of these 1000

orbits, 653 are bound to M31 and 308 are on radial trajectories.

The top-right panel of Figure 15 shows a histogram of orbits with added photometric,

kinematic, and fitness constraints. The outlined histogram imposes that weighted surface

brightness χ2 probabilities return values ≥ 0.1, and that the unweighted surface brightnes

and weighted velocity χ2 probabilities ≥ 10−10. Notice that these constraints differ from

those applied to the exponential disk models. Since the hot spheroidal model follows a

Hernquist profile characterized by an r1/4 law (and not an exponential profile), we relax

the surface brightness χ2 conditions that are more sensitivite to the satellite’s inner regions,

a portion that has experienced little, if any, tidal distortion. These imposed constraints

reduce 1000 orbits to 5 and return a direction of approach lying somewhere between the

north (N) and north-northwest (NNW), with a peak of 4 orbits in the NNW. The shaded

region enclosed within the histogram further imposes that the Fitness ≥ 0.685, a value

selected to be just below that of the top 10 orbits (or 1%). This constraint reduces the 5

orbits to 3, indicating that 7 of the top 10 orbits fail to satisfy all the imposed photometric

and kinematic constraints given above. The remaining directions of approach all fall in the

NNW, ruling out N approaches, a result similar to the disk models’ findings. Hence, the

initial directional preference suggested by the 1000 orbits histogram is reinforced with the

addition of photometric, kinematic and fitness constraints.

These restrictions rule out other possible orbits, including those tracing the stellar arc-

like feature seen to the north of M31. The hot spheroid simulations place a mere 2.5% of the

1000 GA orbits in the 4 bins NNE through E. None of these orbits meet a weighted angular

χ2 constraint of 0.1. Hence, orbits tracing the observed stellar arc are ruled out as solutions

by the twisting of elliptical isophotes in the tidally distorted regions of NGC 205.

4.3.2. Preferred Parameter Values (Hot Spheroid)
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Fig. 16.— Hot spheroid. Same as Figures 6 and 11 but for the hot spheroid model with only

three constrained orbits, highlighted in red. Notice that the spherical nature and density

profile of this model reduces the parameters from 9 to 6.
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Fig. 17.— Hot Spheroid Model. Similar to Figures 7 and 12 but instead showing vx, vy

and z for the hot spheroid model. Orbits with Fitness ≥ 0.6 give vx = 163 ± 77 km s−1,

vy = −376±46 km s−1, |v| = 417±33 km s−1 (not shown), and z = 9±5 kpc, values nearly

identical to those from the disk models.
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The resultant parameter values from the 1000 hot spheroid GA runs are shown in Figure

16. The spherical nature and density profile of this model effectively reduces the number of

parameters from 9 to 6, eliminating r0,i, φ, and θ.

The GA’s preference for certain parameter values is quantified in Figure 17. The top two

rows (Fitness ≥ 0.6) show the well resolved tangential components of the velocity vector with

vx = 163± 77 km s−1 and vy = −376± 46 km s−1, effectively moving NGC 205 towards the

southeast. This results in a net velocity of |v| = 417±33 km s−1 (Fitness ≥ 0.6). Contrastly,

only the magnitude of the velocity could be well resolved in the case of the cold disk model.

The GA also prefers z distances very close to M31 with z = 9±5 kpc (bottom row of Figure

17, Fitness ≥ 0.6). As with the disk models, an orbit’s fitness beyond this distance declines

rapidly. In the bottom-right plot of Figure 16, a correlation of higher fitness to lower a205

values can be seen. This is a result of the initial particle distribution’s dependence on a205

in Eqn 19, a dependence that did not exist for the disk models. Hence, the GA’s attempt to

reproduce the exponential surface brightness profile results in this correlation.
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Fig. 18.— Hot Spheroid Model. Same as Figures 8 and 13 but for the hot spheroid model

whose resulting best orbit has a fitness of 0.73. (d) Note that the inner velocity profile is

hatched out indicating that it was not used to determine the orbit’s fitness.
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However, Figure 16 also demonstrates that some of the parameters are not well con-

strained by the simulations. As with the disk models, the radial velocity vz contains a

significant amount of scatter and is likely not constrainable beyond observations. In ad-

dition, the satellite’s mass, M205 is unresolved. Hence, as with the disk results, the GA

produces inconclusive results for M205 and does not further reduce the observed error on vz.

However, it is able to reasonable constrain NGC 205’s tangential velocity and line-of-sight

distance, values which also happen to closely match those from the disk simulations.

4.3.3. Best Orbit (Hot Spheroid)
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Fig. 19.— Hot Spheroid Model. Same as Figures 9 and 14 but for the hot spheroid model.

The positions are given at times −384 Myr, present, 76 Myr and 384 Myr. In this model,

NGC 205 traces out a loop orbit. The panel on the right is a zoomed in view of NGC 205

at 384 Myr on the plane of the sky.
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Figure 18 displays the hot spheroid’s resulting best orbit from the 1000 GA runs. This

orbit approaches M31 from the NNW, is just barely bound (with |v| = 434 km s−1 and

vesc = 483 km s−1), and has a Fitness of 0.73. Notice that on the bottom-right plot the

inner velocity profile is hatched out indicating that the slope test was not used for this model.

The simulated surface brightness χ2 tests result in probabilities of 8×10−10, 6×10−10, 0.757

and 0.83 for the radial, angular, weighted radial and weighted angular tests, respectively, and

in a χ2 probability of 0.002 for the weighted velocity profile. The orbit’s poor performance

on the unweighted surface brightness χ2 tests is a direct result of comparing the simulated

spheroid, constructed using a Hernquist density profile, to the observed NGC 205, which

follows an exponential profile. Despite this fact, the orbit performs quite well on the weighted

χ2 tests that model the tidally distorted regions of NGC 205. After the simulated interaction

with M31, the semi-major axis velocity profile contains an average observable dispersion of

17 km s−1 (which is lower than the observed dispersion of 42 km s−1), with a maximum

dispersion of 36 km s−1 at a radius of 1.0 kpc. The parameter values of this orbit are

M205 = 1.5× 109M�, vx = 168 km s−1, vy = −397 km s−1, vz = 57 km s−1, z = 5.8 kpc, and

a205 = 1.7 kpc. As with both disk models, this orbit is projected to pass within ≈ 9 kpc

of M31’s center in the plane of M31’s disk. Since this satellite is not rotating, prograde or

retrograde definitions do not apply.

Figure 19 illustrates the past, present and future predictions for NGC 205 when it is

modeled as a hot spheroid supported by isotropic velocities. The distribution of particles

are given for times −384 Myr, present, 76 Myr and 384 Myr. The gravitationally bound

satellite traces out a loop orbit. The panel to the far right in Figure 19 shows NGC 205 in

the plane of the sky at 384 Myr. The simulated satellite experiences a significant amount of

tidal distortion after passing through the disk of M31 .

4.3.4. Semi-Major Axis Velocity Dispersion

Figures 8, 13 and 18 show the best fit orbit for each of the three models. However, none

these orbits produce profiles that match the observed velocity dispersion profile. This is

expected since our fitness tests do not contain a velocity dispersion profile test, meaning our

orbits are not encouraged to match this observable. The main reason this feature is not used

is because the low number of particles (1, 000) used for each orbit makes it nearly impossible

to fit a histogram and recover an accurate measurement for the velocity dispersion at all

points along the semi-major axis of NGC 205.

We expect that of the three models the hot spheroid model, supported completely by

isotropic velocities, is most capable of reproducing the observed dispersion. To test this,
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we use 3, 000 mass-less test particles plus the best fit hot spheroid model’s velocity and

line of sight distance parameters given in § 4.3.3, and we conduct a coarse, iterative search

in the mass (M205) and Hernquist scale length (a205) dimensions. We search these two

parameters because they are unconstrained in all three models and heavily influence the

simulated velocity dispersion profile. After producing discrete relations between ah and the

mean velocity dispersion, we fit a power law line and interpolate to find the values of ah, at

each value of M205, that result in a mean dispersion of 35 km s−1. This result is displayed as

circles in the top panel of Figure 20. The solid line in the top panel of Figure 20 indicates the

analytic solution for these parameter values in a tidally undistorted satellite with a projected

velocity dispersion of 35 km s−1 at a radius of 1 kpc (Hernquist (1990), Eqn [42]). Although

this line measures the velocity dispersion at a given radius, rather than the mean velocity

dispersion, the result suggests that tidal interactions between at hot spheroid progenitor and

parent galaxy have not significantly impacted the velocity dispersion within a 1 kpc radius.

In addition to matching the observed mean dispersion, we find that all these combi-

nations of M205 and ah sufficiently reproduce the velocity dispersion profile, including the

observed dip at the center. We randomly select one of these points (M205 = 4.2 × 109M�,

ah = 1.2 kpc), denote it with a black circle and display the orbit in the bottom 4 panels

of Figure 20. The poor fitness values reported by this orbit are not concerning since this

orbit was not a true result of the optimization scheme. Hence, while the mass and Hernquist

scale length parameters are not constrained in the optimized parameter space search, their

relative values are suggested by the observed velocity dispersion.
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Fig. 20.— Hot Spheroid Model. The circles in the top panel show, for the tidally distorted

best-fit hot spheroid orbit, the combinations of the mass M205 and Hernquist scale length

ah parameters that reproduce the observed mean velocity dispersion of 35 km s−1. The solid

line gives analytic predictions for these parameter in a tidally undistorted satellite with a

projected velocity dispersion of 35 km s−1 at a radius of 1 kpc. The bottom four panels

correspond to the orbit denoted by the black point in the top panel, and are similar to

Figure 18, but with 3000 particles, a mass of 4.2× 109M�, and Hernquist scale length of 1.2

kpc. Note that this model progenitor reproduces the observed velocity dispersion profile.
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5. DISCUSSION

This paper presents the methods and results of an optimized, restricted N -body search

for NGC 205’s orbit and system parameters. We account for uncertainties in the parameter

space by placing very liberal upper and lower limits on our parameters, using three dynami-

cally distinct models for the initial configuration of NGC 205, and running our optimization

algorithm (GA) 1000 times on each model. We find that out of the 1022 possible orbits, not

only are certain orbits and portions of parameter space carved out, but this convergence is

also model independent. These findings are outlined below:

• The simulations indicate that NGC 205 is approaching from the NW region on the

plane of the sky, moving towards the SE (i.e. increasing in RA, decreasing in DEC),

with the cold disk model favoring an approach from the NW and the warm disk & hot

spheroid models favoring the NNW.

• These orbits do not trace out nor do they intersect the 1◦ long stellar arc observed

to north of M31, which was hypothesized as a tidal stream emanating from NGC 205

by McConnachie et al. (2004). Orbits that trace out this region on the plane of the

sky (i.e. approaches from the NNE through E region) poorly match the photometry of

NGC 205, specifically, the isophotal twisting. Instead, approaches from the NW-NNW

region are preferred, thus ruling out the stellar arc as a trail of debris from NGC 205.

• Large velocities in the range 300–500 km s−1 are highly favored for NGC 205. While

the majority of the orbits found by the GA are bound, the best fitting orbits are

either very close to escape velocity or unbound. However, such velocities are not

completely uncommon for local group satellites. Proper motion measurements reveal

that the Large Magellanic Cloud is very near escape velocity and likely on its first

passage about the Milky Way (Kallivayalil et al. 2006; Besla et al. 2007). The dwarf

spheroidal galaxies And XIV and And XII are near, or exceed, their local escape speeds

and are presumably falling into the Local Group for the first time (Majewski et al.

2007; Chapman et al. 2007). The large tangential component of NGC 205’s simulated

velocities translates into a proper motion of ∼ 0.1 mas yr−1.

• The GA is able to better fit NGC 205’s observed kinematic profile when the satellite’s

line-of-sight distance is very close to M31. The resulting fits report relative distances

between NGC 205 and M31 in the range 2–20 kpc. Note that 2 kpc is our lower

bound on the line sight distance parameter. These distances correspond to a change

of 0.077+0.018
−0.015 mag in McConnachie et al. (2005) measurements of NGC 205’s red giant

branch tip (TRGB), analogous to either an increase in their adopted TRGB absolute
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magnitude (MTRGB
I ) and/or reddening correction (AI), or in a decrease in the TRGB

observed magnitude (ITRGB). Furthermore, this magnitude difference is in agreement

with the ±0.07 mag errors quoted by McConnachie et al. (2005) on the individual

distance measurements to NGC 205 and M31. As an aside, a magnitude difference

could also be accounted for by NGC 205’s composite stellar population (Salaris &

Girardi 2005) resulting from a recent (∼ 0.5 Gyr) burst of star formation (Marleau

et al. 2006). Given these possible corrections and the close relative distances found by

the simulation, the question is raised: Could NGC 205 be in front of M31 rather than

behind it?

• The disk models return tightly constrained initial scale lengths in the range 0.39–0.55

kpc, values approximately equal to NGC 205’s current scale length of 0.59 kpc. This

result is consistent with the photometric and kinematic observations which suggest

the central region of NGC 205 is largely unaffected by tides. Hence, both the inner

kinematics and photometry are determined by the initial parameters of the system.

• The cold disk model demonstrates its plausibility as a configuration for NGC 205 by

the induction of velocity dispersions into its initially cold profile via tidal interactions.

Hence, all three models contain some dispersion along their final semi-major axis ve-

locity profile.

• For the best fit hot spheroid model, we can reproduce the observed mean velocity

dispersion of 35 km s−1and the semi-major axis velocity dispersion profile by using

specific combinations of two otherwise unconstrained parameters, satellite mass (M205)

and Hernquist scale length (a205).

• For all three models, NGC 205’s large tangential velocities and close approaches to

M31 indicate that it is difficult to distort a satellite to the extent that NGC 205

is observed. In order to reproduce the abrupt turnover and reversal in the velocity

profile, NGC 205 must come very near to M31. While the photometric profile can

be reproduced at large distances, the resulting velocity turnover is less abrupt and the

reversal is not as steep. However, at very close approaches (< 20 kpc), it is very easy to

disrupt NGC 205. In order to avoid complete disruption and/or long tidal streamers,

the satellite must approach M31 with a very high velocity. Hence, the combined

photometric and kinematic observations have managed to remove degeneracies in some

of the parameter space.

• The constrained orbits are primarily radial and projected to pass within 10 kpc of M31’s

center. For the cold disk model, orbits that are not radial and have a fitness > 0.25

are prograde. In contrast, a larger fraction of the warm disk model’s orbits with fitness
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> 0.25 are retrograde. This result is not surprising since the warm disk model contains

some initial velocity dispersion, allowing its satellites to be more easily distorted. Thus,

some of the warm disk satellites are able to reproduced milder photometric distortions

by approaching on retrograde orbits (Read et al. 2006).

• Given that many of the best fitting orbits are both radial and unbound, it is not

surprising that NGC 205 has only experienced a small amount of distortion. That is,

an unbound orbit indicates that NGC 205 is on its first passage while satellites on radial

orbits are more difficult to disrupt than those on prograde orbits (Read et al. 2006).

Although the future projections show NGC 205 whizzing through M31, inclusion of

dynamical friction would change this result by slowing the satellite after hitting M31

for the first time (Seguin & Dupraz 1994). This braking mechanism is so efficient that

it is likely NGC 205 will eventually merge with M31.

Although the GA’s search was quite successful, it was unable to constrain the mass and

dark matter content. This latter result could be due to either degeneracies in the parameter

space or an insensitivity to these parameters by the fitness tests. Furthermore, it appears

that to some degree the algorithm did get stuck in local optima, a result evidenced by

the scatter in the solutions and the fact that some orbits had very low fitness. Although we

attempt to circumvent this undesirable result by running the GA numerous times, we cannot

be 100% certain that we converge on the “best orbit” in the parameter space. However, we

do find that other GA and fitness test configurations result in declining levels of a best orbit

fitness’ and are thus confident that our method is effective. While other optimization tools

are available (i.e. simulated annealing), they too have their problems and limitations, and

cannot offer guaranteed improvements.

6. FUTURE DIRECTIONS

We have presented the results of optimized restricted N -body simulations of NGC 205’s

tidal interaction with M31 using initially self-consistent satellite models and parameter spaces

tailored specifically to the system. Although this simple model produces satisfactory results,

improvements to the simulations will generate a more detailed and accurate account of the

interaction, possibly produce tighter constraints on the parameters, and provide greater

insight into the past, present and future of NGC 205. In this final section we discuss two

observational advances that can be made and a handful of numerical improvements that can

be applied to the NGC 205-M31 system in order to better and more accurately model their

interaction.
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The simulations can be significantly improved by reducing the observational errors. As

discussed, the current value for the line-of-sight distance between NGC 205 and M31 is esti-

mated to be 39±37 kpc (McConnachie et al. 2005). An improvement on the relative distance

between NGC 205 and M31 would significantly constrain the parameter space. In addition,

if NGC 205 indeed has a large tangential motion of 300− 500 km s−1, the satellite’s proper

motion could be resolved at long wavelengths over the course of a decade or two, thus provid-

ing another significant constraint on the system. These two measurements, in conjunction

with current sky positions, radial velocities, and models of M31’s mass distribution, would

provide a complete description of NGC 205’s orbit.

Our simple model of NGC 205’s interaction with M31 yields results that are consistent

and relatively independent of model type. An obvious improvement to the current simulation

is to use velocity dispersion as a constraint on the system. Another improvement, applying

to only the spheroid model, would be to weight the brightness of the mass-less test particles

such that the initial surface brightness profile matches the observed exponential profile of

NGC 205. Furthermore, this system can be better modeled with the inclusion of dynamical

friction and mass loss, effects which act to slow the system down and increase the level of

distortion in the satellite. The addition of these processes effectively transforms our time-

independent model into a time-dependent problem. Another modification is to construct

NGC 205 as a self gravitating model with both dark and luminous particles, thus switching

from a restricted N -body to a full N -body simulation. However, this more realistic model

changes the problem from O(N) to a O(N2), leading to a notable increase in computation

time and making it extremely costly to run the simulation along with a genetic algorithm.

Despite this complication, a self-gravitating model has a significant advantage in that it

allows for evolution in NGC 205. This construction provides the necessary platform to test

various formation scenarios for the satellite since it can be initialized as a spiral or dIrr and

then transformed into a dE through tidal interactions. If this improvement were to be made,

one might also consider adding an initial gas mass to the progenitor galaxy and performing

hydrodynamic simulations for completeness. Last but not least, NGC 205’s orbit can be

improved by adding the perturbations from M31’s other satellites, such as M32, as well as

the potential of the Milky Way.
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