The gravitational constant \(g = 6.67 \times 10^{-8} \frac{\text{cm}^3}{\text{gm} \cdot \text{s}^2} \).

- A sugar cube is about 1 gm and about 1 cm\(^3\).
- The numerical value of \(g \) is telling us that two sugar cubes placed 1 cm apart in space take about \(\sqrt{\frac{g}{c}} \) seconds \(\approx 1 \text{hr} \) to come together. Natural units for gravity are thus "cglh" because they make \(g \approx 1 \).

\[\vec{F}_1 = -\vec{F}_2; \quad M_1 \vec{r}_1 + M_2 \vec{r}_2 = 0 \]

- Integrate 1 time w.r.t. time
 \[M_1 \vec{r}_1 + M_2 \vec{r}_2 = \vec{a} \quad \text{constant vector} \]

- Integrate another time w.r.t. time.
 \[M_1 \vec{r}_1 + M_2 \vec{r}_2 = \vec{a} t + \vec{b} \]

Defn. of center of mass:
\[\vec{R} = \frac{M_1 \vec{r}_1 + M_2 \vec{r}_2}{M_1 + M_2} \]

\[\Rightarrow \vec{R} = \frac{\vec{a}}{m_1 + m_2} = (\text{constant}) \]

\[\Rightarrow \vec{R} = \frac{\vec{a} t + \vec{b}}{m_1 + m_2} \]

The momentum of the 2-body system is conserved, and the center of mass moves with constant velocity.

\[\text{knowing the motion of the system as a whole, all that is required is to know the motion of body 1 w.r.t. body 2.} \]