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What are control systems? 

•  Control is the process of making a system variable 
adhere to a particular value, called the reference 
value. 

•  A system designed to follow a changing reference is 
called tracking control or servo. 
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Outline of topics 

• What is control? 
-  The concept of closed loop feedback control 

• A basic tool: the Laplace transform  
-  Using the Laplace transform to characterize the time 

and frequency domain behavior of a system 
-  Manipulating Transfer functions to analyze systems 

• How to predict performance of the controller 
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Aberrated wavefront 
phase surfaces!

Telescope Aperture!

Imaging 
dector!Wavefront corrector 

(Deformable Mirror)!

Adaptive Optics Control 

Wavefront 
sensor!

Corrected Wavefront!

Computer!
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Differences between open-loop and 
closed-loop control systems 

•  Open-loop: control system 
uses no knowledge of the 
output 

•  Closed-loop: the control 
action is dependent on the 
output in some way 

•  “Feedback” is what 
distinguishes open from 
closed loop 

•  What other examples can 
you think of? 

OPEN	

CLOSED	
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More about open-loop systems 

•  Need to be carefully 
calibrated ahead of time: 

•  Example: for a 
deformable mirror, need 
to know exactly what 
shape the mirror will have 
if the n actuators are each 
driven with a voltage Vn   

•  Question: how might you 
go about this calibration? 

OPEN	
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Some Characteristics of Closed- Loop 
Feedback Control 

•  Increased accuracy (gets to the desired final position 
more accurately because small errors will get corrected 
on subsequent measurement cycles) 

•  Less sensitivity to nonlinearities (e.g. hysteresis in the 
deformable mirror) because the system is always 
making small corrections to get to the right place 

•  Reduced sensitivity to noise in the input signal 

•  BUT: can be unstable under some circumstances (e.g. if 
gain is too high) 
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Historical control systems: float valve 

•  As liquid level falls, so does float, allowing more liquid to flow 
into tank 

•  As liquid level rises, flow is reduced and, if needed, cut off 
entirely 

•  Sensor and actuator are both “contained” in the combination of 
the float and supply tube 

Credit: Franklin, Powell, Emami-Naeini 



Page 9    	

Block Diagrams: Show Cause and Effect 

•  Pictorial representation of cause and effect 

•  Interior of block shows how the input and output are 
related.   

•  Example b: output is the time derivative of the input 

Credit: DiStefano et al. 1990 
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“Summing” Block Diagrams are circles 

•  Block becomes a circle or “summing point” 

•  Plus and minus signs indicate addition or subtraction 
(note that “sum” can include subtraction) 

•  Arrows show inputs and outputs as before 

•  Sometimes there is a cross in the circle 

X	

Credit: DiStefano et al. 1990 
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A home thermostat from a control theory 
point of view 

Credit: Franklin, Powell, Emami-Naeini 
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Block diagram for an automobile cruise 
control 

Credit: Franklin, Powell, Emami-Naeini 
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Example 1 

•  Draw a block diagram for the equation 
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Example 1 

•  Draw a block diagram for the equation 

Credit: DiStefano et al. 1990 
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Example 2 

•  Draw a block diagram for how your eyes and brain help 
regulate the direction in which you are walking 
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Example 2 

•  Draw a block diagram for how your eyes and brain help 
regulate the direction in which you are walking 

Credit: DiStefano et al. 1990 
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Summary so far 

•  Distinction between open loop and closed loop 
–  Advantages and disadvantages of each 

•  Block diagrams for control systems 
–  Inputs, outputs, operations 
–  Closed loop vs. open loop block diagrams 
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The Laplace Transform Pair"
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The Laplace Transform Pair"

Inverse Transform:"
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The above integration makes use of the Cauchy Principal Value Theorem:"
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Laplace Transform Pairs"
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Laplace Transform Properties (1)"
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Laplace Transform Properties (2)"

h(t)!
x(t)! y(t)!

H(s)!
X(s)! Y(s)!

convolution of input x(t) 
with impulse response h(t)!

•  Product of input spectrum X(s) with 
frequency response H(s)!

•  H(s) in this role is called the transfer 
function!

System Block Diagrams"
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Closed loop control (simple example, H(s)=1)"

E s( ) =W s( )− gC s( )E s( )
solving for E(s),"

E s( ) = W s( )
1+ gC s( )

Our goal will be to suppress X(s) (residual) by high-gain feedback so that Y(s)~W(s)"

W(s)" +"

gC(s)"

-"

E(s)"

Y(s)"

residual"

correction"

disturbance"

Where        gain"

Note: for consistency “around the 
loop,” the units of the gain g must be 
the inverse of the units of C(s)."

g ≡

X(s)"
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Back Up: Control Loop Arithmetic 

  
Y s( ) = A(s)W s( )− A s( )B s( )Y s( )

  
Y s( ) = A s( )W s( )

1+ A s( )B s( )

Unstable if any roots of  
        1+A(s)B(s) = 0   
are in right-half of the s-plane: 
exponential growth  

Y(s)	W(s)	 +	

B(s)	
-	

input	 A(s)	 output	

exp(st)
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Stable and unstable behavior 

Stable Stable 

Unstable 

Unstable 
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Block Diagram for Closed Loop Control 

9!

Our goal will be to find a C(f) that suppress e(t) (residual) so that !DM tracks !"

where ! = loop gain!

H(f) = Camera Exposure x DM Response x Computer Delay!
C(f) = Controller Transfer Function!

!(t) 
+!

H(f) 

-!

e(t) 

"DM(t)!

residual!

correction!

disturbance!

gC(f)!

We can design a filter, C(f), into the feedback loop to:!

a)  Stabilize the feedback (i.e. keep it from oscillating)!
b)  Optimize performance!

(!)! (! )!f!H!f!gC!
f!e!

)!(!1!
1!

+!
=! !( f )!

g
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The integrator, one choice for C(s)"
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A system whose impulse response is the unit step"

acts as an integrator to the input signal:"
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that is, C(s) integrates the past history of inputs, x(t)"
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An integrator has high gain at low frequencies, low gain at high frequencies."

C(s)!
X(s)! Y(s)! ( ) ( )

s
sXsY =

In Laplace terminology:"
The Integrator, continued"

Write the input/output transfer function for an integrator in closed loop:"

+"

gC(s)"

-"

X(s)"

Y(s)"

W(s)"

HCL(s)"
W(s)" X(s)"

≡

The closed loop transfer function with the integrator in the feedback loop is:"

input disturbance (e.g. atmospheric wavefront)"

closed loop transfer function"
output (e.g. residual wavefront to science camera)"

C s( ) = 1
s

⇒ X s( ) = W s( )
1+ g s

= s
s + g

⎛
⎝⎜

⎞
⎠⎟
W s( ) = HCL s( )W s( )
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HCL s( ) = s
s + g

HCL(s),	viewed	as	a	sinusoidal	response	filter:	

DC	response	=	0	
(“Type-0”	behavior)	HCL s( )→ 0 as s → 0

HCL s( )→1 as s →∞ High-pass	behavior	

and	the	“break”	frequency	(transiFon	from	low	freq	to	high	freq	
behavior)	is	around	s	~	g	

The	integrator	in	closed	loop	(1)	
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The	integrator	in	closed	loop	(2)	

The	break	frequency	is	oKen	called	the	“half-power”	frequency	

s	

( )2γiHCL

1	

1/2	

g	

(log-log	scale)	

•  Note	that	the	gain,	g,	is	the	bandwidth	of	the	controller:		
•  Frequencies	below	g	are	rejected,	frequencies	above	g are	passed.		
•  By	convenFon,	g	is	known	as	the	gain-bandwidth	product.	

HCL (s) 2

HCL s( ) = s
s + g
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Disturbance Rejection Curve for 
Feedback Control With Compensation 

19!

Increasing 
Gain (g) 

Much 
better 
rejection!

Starting to 
resonate!

(! )!f!H!f!gC! )!(!1!
1!

+!
=!

!( f )!
e( f )!

 C(f) = Integrator = e-sT / (1 – e-sT) 
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Assume that residual wavefront error is 
introduced by only two sources 

1.   Failure to completely cancel atmospheric phase 
distortion 

2.   Measurement noise in the wavefront sensor 

Optimize the controller for best overall 
performance by varying design parameters such 
as gain and sample rate 



Page 33    	

Atmospheric turbulence 

!  Temporal power spectrum of atmospheric phase:  

 S! (f) = 0.077 (v/r0)5/3 f -8/ 3 

!  Power spectrum of residual phase 

 Se(f) = | 1/(1 + g C(f) H(f)) |2 S!(f) 

22"

Increasing 
wind"

Uncontrolled"

Closed Loop 
Controlled"
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Noise 

!  Measurement noise enters in at a different point in 
the loop than atmospheric disturbance  

!  Closed loop transfer function for noise: 

23"

!(t) 
+"

H(f) 

-"

e(t) 

!DM(t)"

residual"

correction"

disturbance"

gC(f)" n(t) 
noise"

(")" (" )"f"H"f"gC"
f"e"

)"("1"
gC( f )H( f )!
+"

=" n( f ) 

Noise feeds 
through"

Noise 
averaged out"
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Residual from atmosphere + 
noise 
!  Conditions 

!  RMS uncorrected turbulence: 5400 nm 
!  RMS measurement noise: 126 nm 
!  gain = 0.4 

!  Total Closed Loop Residual = 118 nm RMS 
24"

Residual Turbulence 
Dominates"

Noise Dominates"
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Increased Measurement 
Noise 
!  Conditions 

!  RMS uncorrected turbulence: 5400 nm 
!  RMS measurement noise: 397 nm 
!  gain = 0.4 

!  Total Closed Loop Residual = 290 nm RMS 
25"

Residual Turbulence 
Dominates"

Noise Dominates"
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Reducing the gain in the higher 
noise case improves the residual 

!  Conditions 
!  RMS uncorrected turbulence: 5400 nm 
!  RMS measurement noise: 397 nm 
!  gain = 0.2 

!  Total Closed Loop Residual = 186 nm RMS 
26"

Residual Turbulence 
Dominates"

Noise Dominates"
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What we have learned 

• Pros and cons of feedback control systems 

• The use of the Laplace transform to help characterize 
closed loop behavior 

• How to predict the performance of the adaptive optics 
under various conditions of atmospheric seeing and 
measurement signal-to-noise 

• A bit about loop stability, compensators, and other good 
stuff 
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