ASTRONOMY 2 - Overview of the Universe Second Practice Problem Set

1. Consider a $2 M_{\odot}$ neutron star. The mass of a neutron is $1.67 \times 10^{-24} \mathrm{~g}$, and $1 M_{\odot}=$ $2 \times 10^{33} \mathrm{~g}$.
(i) How many neutrons are in this neutron star? (1 point)
A. 6.0×10^{23} neutrons
B. 1.2×10^{23} neutrons
C. 1.2×10^{57} neutrons
D. 2.4×10^{57} neutrons
E. 6.7×10^{9} neutrons
(ii) Assuming the energy released during core bounce and supernova phase of this neutron star was 2 MeV per neutron, calculate the total energy output of the supernova in ergs. Note that $1 \mathrm{MeV}=1.6 \times 10^{-6}$ ergs. (2 points)
A. $1.5 \times 10^{63} \mathrm{ergs}$
B. $3.8 \times 10^{51} \mathrm{ergs}$
C. $7.7 \times 10^{51} \mathrm{ergs}$
D. $7.7 \times 10^{57} \mathrm{ergs}$
E. $4.8 \times 10^{57} \mathrm{ergs}$
2. Galaxy A is observed to have a velocity of $v_{\mathrm{obs}}=-350 \mathrm{~km} / \mathrm{s}$ and is known to have a peculiar velocity of $v_{\mathrm{pec}}=-500 \mathrm{~km} / \mathrm{s}$.
(i) Use the formula: $v_{\text {obs }}=v_{\text {Hubble }}+v_{\text {pec }}$, to calculate the Hubble expansion velocity $v_{\text {Hubble }}$ for this galaxy. (1 point)
A. $150 \mathrm{~km} / \mathrm{s}$
B. $-150 \mathrm{~km} / \mathrm{s}$
C. $-850 \mathrm{~km} / \mathrm{s}$
D. $850 \mathrm{~km} / \mathrm{s}$
E. $\pi \mathrm{km} / \mathrm{s}$
(ii) Galaxy B has a Hubble expansion velocity of $v_{\text {Hubble }}=2.8 \mathrm{~km} / \mathrm{s}$. Using Hubble's Law $v_{\text {Hubble }}=H_{0} d$ where $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, determine the distance d to this galaxy. (2 points)
A. -196 Mpc
B. 0.04 Mpc
C. $196 . \mathrm{Mpc}$
D. 25 Mpc
E. -0.04 Mpc
(iii) What is the most likely identity of galaxy B? (1 point)
A. Milky Way galaxy
B. Large Magellanic Cloud galaxy
C. Andromeda galaxy
D. The most distant known galaxy
E. The most distant known quasar
3. Our neighbor galaxy, Andromeda, has a luminosity (intrinsic brightness) 3 times as bright as the Luminosity of our Milky Way galaxy, $L_{\text {Andromeda }}=3 L_{\mathrm{MW}}$, and is at a distance of $d_{\text {Andromeda }}=0.7 \mathrm{Mpc}$. The flux we observe from the Andromeda galaxy (apparent brightness) is 10,000 times brighter than the flux observed from a distant quasar, $f_{\text {Andromeda }}=10^{4} f_{\text {quasar }}$. This quasar has a luminosity that is 1000 times the luminosity of our Milky Way galaxy, $L_{\text {quasar }}=10^{3} L_{\mathrm{MW}}$. What is the distance d to the quasar? (4 points)
[HINT: Use the formula: $f \propto L / d^{2}$. Write two relations, one for Andromeda and another for the quasar. Divide one relation by the other.]
A. $1.28 \times 10^{-1} \mathrm{Mpc}$
B. 3.85 Mpc
C. $1.28 \times 10^{3} \mathrm{Mpc}$
D. $2.36 \times 10^{6} \mathrm{Mpc}$
E. $3.85 \times 10^{12} \mathrm{Mpc}$
4. An astronomer observes a bright star (Altair) that has a parallax angle of $p=$ 0.20 arcseconds. The flux f from Altair is approximately 9.4×10^{-12} times the flux from the Sun. The distance d from the Earth to the Sun is $(1 / 206265)$ pc.
(a) What is the distance d to Altair star in units of parsecs (pc)? (2 points)
[HINT- Use the formula: $d=1 / p$, with distance d in units of $p c$ and parallax p in units of arcseconds.]
A. 0.20 pc
B. 2.06 pc
C. 3.14 pc
D. 5 pc
E. 50 pc
(b) What is the luminosity L of Altair in units of the solar luminosity L_{\odot} ? (4 points)
[HINT- Use the formula: $f \propto \frac{L}{d^{2}}$ or $f=C \frac{L}{d^{2}}$, where C is a constant. Write one equation for Altair and one for the sun. Divide one equation by the other.]
A. $2.35 \times 10^{-} 10 L_{\odot}$
B. $0.016 L_{\odot}$
C. $0.40 L_{\odot}$
D. $1.00 L_{\odot}$
E. $10.00 L_{\odot}$
5. A distant quasar is observed to have a redshift $v / c=0.15$, where v is the recession velocity of the quasar, and $c=300,000 \mathrm{~km} / \mathrm{s}$ is the speed of light.
(a) What is the recession velocity v of the quasar in units of km / s ? (2 points)
A. $7.47 \times 10^{-5} \mathrm{~km} / \mathrm{s}$
B. $45,000 \mathrm{~km} / \mathrm{s}$
C. $0.059 \mathrm{~km} / \mathrm{s}$
D. $1.43 \mathrm{~km} / \mathrm{s}$
E. $1.97 \times 10^{6} \mathrm{~km} / \mathrm{s}$
(b) Using the Hubble expansion formula: $v=H_{0} d$, where the Hubble constant $H_{0}=$ $70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, calculate the distance d to the quasar in units of Mpc ? (3 points)
A. 642.9 Mpc
B. 0.038 Mpc
C. $4.77 \times 10^{-12} \mathrm{Mpc}$
D. 6.77 Mpc
E. $5.35 \times 10^{10} \mathrm{Mpc}$
(c) How long ago was the light we are now seeing from the quasar emitted? Note, $1 \mathrm{Mpc}=$ 3.26 million light years. (3 points)
A. 2.96×10^{-14} million years
B. 0.00032 million years
C. 2.096×10^{3} million years
D. 1.66×10^{-4} million years
E. 9.27 million years
