ASTRONOMY 2 - Overview of the Universe Second Practice Problem Set - Solutions

Problem: 1. Consider a $2 M_{\odot}$ neutron star. The mass of a neutron is $1.67 \times 10^{-24} \mathrm{~g}$, and $1 M_{\odot}=2 \times 10^{33} \mathrm{~g}$.
(i) How many neutrons are in this neutron star? (1 point)

Solution:

$N_{\text {neutrons }}=M_{*} / m_{\text {neutron }}$
$N_{\text {neutrons }}=2 \times 2 \times 10^{33} \mathrm{~g} / 1.67 \times 10^{-24} \mathrm{~g}$
$N_{\text {neutrons }}=(4 / 1.67) \times 10^{57}=2.4 \times 10^{57}$ neutrons, \mathbf{D}
A. 6.0×10^{23} neutrons
B. 1.2×10^{23} neutrons
C. 1.2×10^{57} neutrons
D. 2.4×10^{57} neutrons
E. 6.7×10^{9} neutrons

Problem:

(ii) Assuming the energy released during core bounce and supernova phase of this neutron star was 2 MeV per neutron, calculate the total energy output of the supernova in ergs. Note that $1 \mathrm{MeV}=1.6 \times 10^{-6}$ ergs. (2 points)

Solution:

$E=$ (Number of neutrons) \times (Energy per neutron)
$E=2.4 \times 10^{57}$ neutrons $\times 2 \mathrm{MeV} /$ neutron
$E=2.4 \times 10^{57} \times 2 \mathrm{MeV} \times 1.6 \times 10^{-6} \mathrm{ergs} / \mathrm{MeV}$
$E=2.4 \times 2 \times 1.6 \times 10^{51}=7.7 \times 10^{51} \mathrm{ergs}, \mathbf{C}$
A. $1.5 \times 10^{63} \mathrm{ergs}$
B. $3.8 \times 10^{51} \mathrm{ergs}$
C. $7.7 \times 10^{51} \mathrm{ergs}$
D. $7.7 \times 10^{57} \mathrm{ergs}$
E. $4.8 \times 10^{57} \mathrm{ergs}$
2. Galaxy A is observed to have a velocity of $v_{\mathrm{obs}}=-350 \mathrm{~km} / \mathrm{s}$ and is known to have a peculiar velocity of $v_{\mathrm{pec}}=-500 \mathrm{~km} / \mathrm{s}$.

Problem

(i) Use the formula: $v_{\text {obs }}=v_{\text {Hubble }}+v_{\text {pec }}$, to calculate the Hubble expansion velocity $v_{\text {Hubble }}$ for this galaxy. (1 point)

Solution:

$v_{\text {obs }}=v_{\text {Hubble }}+v_{\text {pec }}$
$v_{\text {Hubble }}=v_{\text {obs }}-v_{\text {pec }}$
$v_{\text {Hubble }}=-350 \mathrm{~km} / \mathrm{s}-(-500) \mathrm{km} / \mathrm{s}=150 \mathrm{~km} / \mathrm{s}, \mathbf{A}$
A. $150 \mathrm{~km} / \mathrm{s}$
B. $-150 \mathrm{~km} / \mathrm{s}$
C. $-850 \mathrm{~km} / \mathrm{s}$
D. $850 \mathrm{~km} / \mathrm{s}$
E. $\pi \mathrm{km} / \mathrm{s}$

Problem:

(ii) Galaxy B has a Hubble expansion velocity of $v_{\text {Hubble }}=2.8 \mathrm{~km} / \mathrm{s}$. Using Hubble's Law $v_{\text {Hubble }}=H_{0} d$ where $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, determine the distance d to this galaxy. (2 points)

Solution:

$v_{\text {Hubble }}=H_{0} d$
$d=v_{\text {Hubble }} / H_{0}$
$d=(2.8 \mathrm{~km} / \mathrm{s}) /(70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc})=0.04 \mathrm{Mpc}, \mathbf{B}$
A. -196 Mpc
B. 0.04 Mpc
C. $196 . \mathrm{Mpc}$
D. 25 Mpc
E. -0.04 Mpc

Problem:

(iii) What is the most likely identity of galaxy B? (1 point)

Solution:
From Arny, p. 490: Large Magellanic Cloud is about 150,000 light years away.
From Seeds, p.257: Andromeda is about 2 million light years away
(see also Problem 3 below).
$0.04 \mathrm{Mpc} \times 3.26 \times 10^{6}$ light years $/ \mathrm{Mpc}=1.3 \times 10^{5}$ light years,
B Large Magellanic Cloud
A. Milky Way galaxy
B. Large Magellanic Cloud galaxy
C. Andromeda galaxy
D. The most distant known galaxy
E. The most distant known quasar

Problem: 3. Our neighbor galaxy, Andromeda, has a luminosity (intrinsic brightness) 3 times as bright as the Luminosity of our Milky Way galaxy, $L_{\text {Andromeda }}=3 L_{\mathrm{MW}}$, and is at a distance of $d_{\text {Andromeda }}=0.7 \mathrm{Mpc}$. The flux we observe from the Andromeda galaxy (apparent brightness) is 10,000 times brighter than the flux observed from a distant quasar, $f_{\text {Andromeda }}=10^{4} f_{\text {quasar }}$. This quasar has a luminosity that is 1000 times the luminosity of our Milky Way galaxy, $L_{\text {quasar }}=10^{3} L_{\mathrm{MW}}$. What is the distance d to the quasar? (4 points)
[HINT: Use the formula: $f \propto L / d^{2}$. Write two relations, one for Andromeda and another for the quasar. Divide one relation by the other.]

Solution:

$f_{\text {Andromeda }} / f_{\text {quasar }}=\left(L_{\text {Andromeda }} / L_{\text {quasar }}\right)\left(d_{\text {quasar }} / d^{2}\right.$ Andromeda $)$
$d^{2}{ }_{\text {quasar }} / d^{2}$ Andromeda $=\left(f_{\text {Andromeda }} / f_{\text {quasar }}\right)\left(L_{\text {quasar }} / L_{\text {Andromeda }}\right)$
$d_{\text {quasar }} / d_{\text {Andromeda }}=\sqrt{\left(f_{\text {Andromeda }} / f_{\text {quasar }}\right)\left(L_{\text {quasar }} / L_{\text {Andromeda }}\right)}$
$d_{\text {quasar }} / d_{\text {Andromeda }}=\sqrt{\left(10^{4}\right)\left(10^{3} L_{\mathrm{MW}} / 3 L_{\mathrm{MW}}\right)}$
$d_{\text {quasar }}=\sqrt{10^{7} / 3} \times 0.7 \mathrm{Mpc}=1826 \times 0.7 \mathrm{Mpc}=1.28 \times 10^{3} \mathrm{Mpc}, \mathbf{C}$
A. $1.28 \times 10^{-1} \mathrm{Mpc}$
B. 3.85 Mpc
C. $1.28 \times 10^{3} \mathrm{Mpc}$
D. $2.36 \times 10^{6} \mathrm{Mpc}$
E. $3.85 \times 10^{12} \mathrm{Mpc}$

Problem: 4. An astronomer observes a bright star (Altair) that has a parallax angle of $p=0.20$ arcseconds. The flux f from Altair is approximately 9.4×10^{-12} times the flux from the Sun. The distance d from the Earth to the Sun is $(1 / 206265)$ pc.
(a) What is the distance d to Altair star in units of parsecs (pc)? (2 points)
[HINT- Use the formula: $d=1 / p$, with distance d in units of $p c$ and parallax p in units of arcseconds.]

Solution:

$d=1 / p=1 / 0.20=5 \mathrm{pc}, \mathbf{D}$
A. 0.20 pc
B. 2.06 pc
C. 3.14 pc
D. 5 pc
E. 50 pc

Problem:

(b) What is the luminosity L of Altair in units of the solar luminosity L_{\odot} ? (4 points)
[HINT- Use the formula: $f \propto \frac{L}{d^{2}}$ or $f=C \frac{L}{d^{2}}$, where C is a constant. Write one equation for Altair and one for the sun. Divide one equation by the other.]

Solution:

$f_{\text {Altair }} / f_{\odot}=\left(L_{\text {Altair }} / L_{\odot}\right)\left(d_{\odot}^{2} / d_{\text {Altair }}^{2}\right)$
$L_{\text {Altair }} / L_{\odot}=\left(f_{\text {Altair }} / f_{\odot}\right)\left(d_{\text {Altair }}^{2} / d_{\odot}^{2}\right)$
$L_{\text {Altair }}=9.4 \times 10^{-12} \times(5 \mathrm{pc})^{2} /(1 / 206265 \mathrm{pc})^{2} L_{\odot}$
$L_{\text {Altair }}=9.4 \times 10^{-12} \times 25 / 2.4 \times 10^{-11} L_{\odot}=0.94 \times 25 / 2.4 L_{\odot}=10 L_{\odot}, \mathbf{E}$
A. $2.35 \times 10^{-} 10 L_{\odot}$
B. $0.016 L_{\odot}$
C. $0.40 L_{\odot}$
D. $1.00 L_{\odot}$
E. $10.00 L_{\odot}$

Problem: 5. A distant quasar is observed to have a redshift $v / c=0.15$, where v is the recession velocity of the quasar, and $c=300,000 \mathrm{~km} / \mathrm{s}$ is the speed of light.
(a) What is the recession velocity v of the quasar in units of km / s ? (2 points)

Solution:

$v / c=0.15$
$v=0.15 c=0.15 \times 3 \times 10^{5} \mathrm{~km} / \mathrm{s}=45,000 \mathrm{~km} / \mathrm{s}, \mathbf{B}$
A. $7.47 \times 10^{-5} \mathrm{~km} / \mathrm{s}$
B. $45,000 \mathrm{~km} / \mathrm{s}$
C. $0.059 \mathrm{~km} / \mathrm{s}$
D. $1.43 \mathrm{~km} / \mathrm{s}$
E. $1.97 \times 10^{6} \mathrm{~km} / \mathrm{s}$

Problem:

(b) Using the Hubble expansion formula: $v=H_{0} d$, where the Hubble constant $H_{0}=$ $70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, calculate the distance d to the quasar in units of Mpc ? (3 points)

Solution:

$v=H_{0} d$
$d=v / H_{0}$
$d=\left(4.5 \times 10^{4} \mathrm{~km} / \mathrm{s}\right) /(70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc})=642.9 \mathrm{Mpc}, \mathbf{A}$
A. 642.9 Mpc
B. 0.038 Mpc
C. $4.77 \times 10^{-12} \mathrm{Mpc}$
D. 6.77 Mpc
E. $5.35 \times 10^{10} \mathrm{Mpc}$

Problem:

(c) How long ago was the light we are now seeing from the quasar emitted? Note, $1 \mathrm{Mpc}=$ 3.26 million light years. (3 points)

Solution:

$642.9 \mathrm{Mpc} \times 3.26$ million light years $/ \mathrm{Mpc}=2.096 \times 10^{3}$ million years, \mathbf{C}
A. 2.96×10^{-14} million years
B. 0.00032 million years
C. 2.096×10^{3} million years
D. 1.66×10^{-4} million years
E. 9.27 million years

Problem: 6. Kepler's Third Law can be written as $P^{2}=C R^{3} / M$, where C is a universal constant and M is the mass of the central object. The Moon orbits the Earth with a period of $P=27.32$ days, at a distance of $R=384,400 \mathrm{~km}$. (7 points total)
(a) The mass of Saturn is 95 times the mass of the Earth. If a moon of Saturn is in orbit around it with a period of $P=234.01$ days. What is the radius of the orbit of Saturn's moon? (4 points)
[HINT: Write one equation for the Earth-Moon system and another equation for Saturn and its moon. Divide one equation by the other.]

Solution:
$\left(P_{\text {Saturn's moon }} / P_{\text {Moon }}\right)^{2}=\left(R_{\text {Saturn's moon }} / R_{\text {Moon }}\right)^{3}\left(M_{\text {Earth }} / M_{\text {Saturn }}\right)$
$\left(R_{\text {Saturn's moon }} / R_{\text {Moon }}\right)^{3}=\left(P_{\text {Saturn's moon }} / P_{\text {Moon }}\right)^{2}\left(M_{\text {Saturn }} / M_{\text {Earth }}\right)$
$\left(R_{\text {Saturn's moon }} / R_{\text {Moon }}\right)=\left(P_{\text {Saturn's moon }} / P_{\text {Moon }}\right)^{2 / 3}\left(M_{\text {Saturn }} / M_{\text {Earth }}\right)^{1 / 3}$
$\left(R_{\text {Saturn's moon }} / R_{\text {Moon }}\right)=(234.01 \text { days } / 27.32 \text { days })^{2 / 3}(95)^{1 / 3}$
$\left(R_{\text {Saturn's moon }} / R_{\text {Moon }}\right)=(8.6)^{2 / 3}(95)^{1 / 3}=4.2 \times 4.6$
$R_{\text {Saturn's moon }}=4.2 \times 4.6 R_{\text {Moon }}=19.1 \times 3.844 \times 10^{5} \mathrm{~km}=7.34 \times 10^{6} \mathrm{~km}, \mathbf{B}$
A. $6.78 \times 10^{2} \mathrm{~km}$
B. $7.34 \times 10^{6} \mathrm{~km}$
C. $4.63 \times 10^{19} \mathrm{~km}$
D. $3.13 \times 10^{8} \mathrm{~km}$
E. $3.19 \times 10^{-9} \mathrm{~km}$

Problem:

(b) If the Earth's mass were tripled, while keeping the Earth-Moon distance the same, what would the period of the Earth's Moon's orbit now be? (3 points)
[HINT: Write two equations for the Earth-Moon system, one for the 'normal' Earth and another for the case where the Earth mass is tripled. Divide one equation by the other.]

Solution:

$\left(P_{3} / P_{1}\right)^{2}=M_{1} / M_{3}$
$P_{3}^{2}=\left(M_{1} / M_{3}\right) P_{1}^{2}$
$P_{3}=\sqrt{M_{1} / M_{3}} P_{1}=\sqrt{1 / 3} \times 27.32$ days $=15.77$ days, \mathbf{D}
A. 2.24×10^{3} days
B. 47.32 days
C. 0.109 days
D. 15.77 days
E. 81.96 days

