Ay 112 Midterm review

In general, read thoroughly all the notes on the web. The questions will be based on
the material covered in the notes, not so much from the accompanying reading,
except as it complements the notes. This is not a guarantee, but a guideline. Pay
close attention to all equations in the notes that are highlighted in yellow. For the
open notes part of the exam, review the two HW solutions, though again not all
questions will have counterparts in the homework.

The closed notes test will cover terminology, concepts, definitions, simple plots.
You need to know “simple” equations like flux, Wiens law, parallax, magnitude,
Kepler’s third law, Virial theorem, etc, but not to solve problems like in the
homework. The open notes part is for that.

Brief incomplete summary of the course so far:
Lecture 1

Age of the earth and sun 4.55 Gy and that radioactive decay is the best way of
getting it. Two isotopes of uranium are involved. You don’t need to remember their
numbers of lifetimes.

Most stars are less massive and less luminous than the sun. On the main sequence L
is proportional to M**3. The lifetime thus goes as 1/M**2. The leftime of the sun is
10 Gy.

Open clusters and globular clusters. The former are groups of stars recently born.
The latter are very old and contain red, low mass stars, plus red giants, horizontal
branch stars, and white dwarfs.

The sun is not at the center of the Milky Way but about 8.5 kpc out. The total mass of
the galaxy is about 10**12 Msun, but only about 2 x 10**11 is within the solar orbit.

The mass is obtained using Kepler’s third law.

There are two kinds of stars — Population 1 and 2. Pop 2 is older. Properties

Pop 1 Pop 2
Low and high M low M
Young old
Red and blue red
Faint and bright faint
Found in disk Often found above disk in halo
Metal content like lower metal content, typically by 10

the sun



Low v perpendicular High v
to disk

Distances by parallax - will be good with Gaia to most stars in our galaxy. Presently
Hipparcos parallaxes are the best, about a miliarcsecond or more (7 mas is typical).

d=1/p the parallax angle in arc sec; distance in parsecs
Measuring extragalactic distances and distances over 1 kpc (for now)
requires standard candles. Flux = L /(4 pi d**2), know L, measure flux get d.

Magnitudes - 5 magnitudes = factor of 100 in flux. Each magnitude is a 100**0.2
change in flux. Absolute magnitude, M, is magnitude,m, if the star is at 10 pc.
M-m =5 -5log d with d in pc. The bigger m, the farther away the star.

A useful standard candle for distances to nearby galaxies is Cepheid variables.
Cepheids have a relation between their period of variation and their average
luminosity. They can be used out to about 20 Mpc (the Virgo cluster). There are
Several varieties of Cepheids and the P-L relation is different for Population I

and II. This caused historical errors in the estimated size and age of the universe.
Cepheids vary because of a changing transparency of their outer layers. The
envelope pulses, the core doesn’t. The instability involves the ionization of He+ to
He++. Cepheid variables are not main sequence stars.

For still greater distances, Type la supernovae can be used. They are very bright and
reach almost the same brightness in each explosion. Small variations can be
corrected for using the “width luminosity relation” — broader light curves are
brighter at peak.

Lecture 2

The Hertzsprung Russel diagram began as a plot of color measured by B-V vs
absolute magnitude (increasing B-V on the bottom axis and decrasing M on the
vertical). There is a relation between B-V and T that can be obtained from the Planck
function. Smaller B-V is higher T. Absolute magnitude can also be corrected to give
bolometric absolute magnitude, again using the Planck function. Then the HR
diagram can be plotted as luminosity (increasing) vs T_eff (decreasing). Patterns
appear - the main sequence, red giants, horizonal branch stars, Cepheid variable,
white dwarfs - know these systematics.

Stars are blackbody emitters. The light takes a long time to diffuse out and comes
into equilibrium with the temperature of its surroundings. For the sun it takes
150,000 years to diffuse out. The continuous spectrum can be described by the
Planck function. This function can be integrated to give the flux at all frequencies of
light,0 T* erg/(cm? s). The wavelength where the emission is a maximum is given
by Wiens law, 0.289 Angstroms/Tesr. The luminosity of the star is given by its area



times o T4, that is 4 mR2 o T4. This gives us a way of measuring stellar radii if we
know L and T. It also describes lines of constant R in the HR diagram which is useful
for understanding the distinction between red giants, white dwarfs, etc.

We get stellar masses directly from measurements of binary star systems. Once we
understand things well enough, we can use the mass luminosity relation to get the
masses of solitary main sequence stars.

Most stars are found in multiple systems. Only two star systems have analytic
solutions. When 2 stars orbit each other they follow Kepler’s laws. The orbits are
ellipses with the center of mass located at a common focal point for the two ellipses.
The product of mass times distance to the center of mass is the same for both stars.
This defines center of mass. A line connecting the two stars (cenetrs) always passes
through the center of mass. The product of mass times speed is also the same for the
two stars. The square of the period is proportional to the cube of the sum of the
semimajor axes of the two orbits cubed.

For circular orbits miri= morz; mivi= movy;a = ri+rz; P 2 = (4 pi2/(G(m1+mz)) a3
Also P =2 piri; vi=2 pirgz, va.

When the orbit is not viewed edge on the masses derived are lower limits to the
actual masses which are actually larger by a factor of 1/Sin3(i) with i the inclination
angle at which the orbit is observed.

Masses can be determined from the periodic Dopler shifts observed in spectroscopic
binaries (those which cannot be visibly resolved but exhibit periodic time variable)
spectra. If the spectroscopic binary is an eclipsing spectroscopic binary we know we
are observing it in the plane of the orbit. An example was given of how to derive
individual masses from observations of the period and v1 and va.

The masses so determined give greater insight into the HR diagram. The main
sequence is a sequence of masses with the brighter stars having higher mass. Since
higher mass stars have shorter lives, the age of a cluster of stars (all of whom were
born at the same time) can be determined from the “turn off mass”, the brightest
main sequence star still left in the cluster. Globular clusters and open clusters tus
have distinctively different HR diagrams. If two open clusters have different turn off
masses, the one with the heaviest main sequence star still remaining will be the
younger.

Lecture 3

Stellar spectra were observed a long time before they were understood and a lot of
the nomenclature like calcium H and K lines dates to that era. Even though calcium
lines are strong in the sun, calcium is not as abundant as hydrogen, which has
weaker lines.



For hydrogen several spectral series are seen that originate or end on the ground
state (Lyman series, ultraviolet); first excited state (n = 2, Balmer series, optical);
second excited state (n = 3, Paschen series, infrared), etc. An especially ubiquitous
optical line is the Balmer alpha line corresponding to the 3<-> 2 transition at 6563
Angstroms (red).

Depending on the temperature, different ionization states are present and lines have
different strengths in the spectrum. This gives us another way to determine the
photospheric temperature (besides Wiens law and L = 4 & R o T#). The spectral
sequence of temperatures is OBAFGKM. The sun is a G2 star. O stars (the hottest,
most massive and rarest stars) show lines of helium, A stars have the strongest
hydrogen (at about 10,000 K). G stars show strong Ca II lines and weakening H
lines; M stars show refractory molecules like TiO and VO. Others are in between.

Lines can be seen in emission or absorption. Most stars including all main sequence
stars have absorption lines. These are created as the blackbody passes through cool
overlying layers that absorb light at preferred wavelengths. Nebulae show emission
lines. They are radiated from the side and re-emit the atomic radiation isotropically.

In astronomy H+ is written as H II. Neutral hydrogen is H . Triply ionized carbon is
CIV, etc.

The Saha equation can be used to calculate the ionization state of atoms in local
thermodynamic equilibrium. This equation gives the abundaces of e.g.,, H [ and H II
in terms of ne, the temperature, statistical factors, and the ionization potential. The
latter enters in as an exponential and so the answer is very dependent on in.
Similarly, the population of excited states in a given atom can be calculated using the
Boltzmann equation. This gives the population of various levels also in terms of
their statistical weights and excitation energies. Using these equations one can show
that hydrogen in the stellar photosphere is almost entirely neutral, but Ca is almost
entirely singly ionized. The population of the n = 2 level in H is very small and hence
the Balmer hydrogen line is quite weak. On the other hand, Ca absortption lines
based on the ground state of Ca Il are very strong despite the very small abundance
ratio of H/Ca in the sun.

The Saha equation also shows that for typical densities, hydrogen will remain
neutral until about 10,000 K and then become ionized. The population of the n = 2
level increases with T until the H is ionized. This explains why H lines are strongest
in A stars and weak in both M stars and O stars. Similar arguments apply to other
spectral features seen on OBAFGKM stars.

As pressure increases, the density increases and atoms tend to be more neutral. Also
as the density increases lines are broadened by “pressure broadening” or the Stark
effect, as the quantum levels become less precise due to the electric fields of nearby



passing atoms. This effect can be used to distinguish stars of the same temperature
and spectral class (OBAFGKM) with different surface gravities. High gravity means,
in hydrostatic equilibrium, high pressure. So main sequence stars have broader lines
than red giants of the same temperature. One can this segregate stars in the HR
diagram not only by T but by radius. There are thus stars of class I, II, III, [V and V.

V is the main sequence. The sun is a G2 - V star. Supergiant stars are class I. The rest
are in between.

Elemental abundances are measured in both the sun and in meteorites. A class of
very primitive, organic bearing meteeorites called C I Carbonaceous Chondrites are
the sample used. They show little signs of melting and chemical fractionation. They
are however deficient in H, He, C, N, O and noble gases like Ar. They are after al,
rocks. For the rest of the elements, agreement between the solar photosphere and
the meteoritic abundances is quite good, usually better than 10%. This set of
concurrent abundances, called the solar abundance set, is typical of Population I
stars and the interstellar medium in our own and other galaxies.

I[sotopic ratios come from meteorites, not the sun.

The most abundant elements are H, He, O, C, and N in that order. Interestingly
except for He, they are what life is mostly made out of.

The solar abundances show strong correlation with nuclear processes, e.g., the large
abundance of iron reflects the strong stability of the iron group elements. The odd-
even effect in the abundances of both elements (K less abundant than Ca for
example) and isotopes reflects pairing effects in the nucleus (to be discussed).

Li is depleted in the sun by a large factor compared with meteorites reflecting the
burn up of Li, a fragile element, in the solar convective zone.

Metal deficient stars show different abundance patters from the sun, especially a
more pronounced odd-even effect and a deficiency of iron compared with oxygen.
This reflects the history of different kinds of supernovae in the galaxy.

Lecture 4

The most basic stellar structure equation is the equation of hydrostatic equilibrium.
For matter at rest, dP/dr = -Gm p/r2. This is worth remembering. Also easy to

remember is the mass conservation equation dm = 4 7 r’p dr.

Starswill stay in hydrostatic equilibrium on a hydrodynamical times scale ~ 1000
s/sqrt(p), less than an hour for the sun.

Gravitational binding energy is defined as Omega = - integral from 0 to M (Gm/r) dm
which is some constant of order unity, « , times - GM2/R. For a sphere of constant

density a= 3/5. The total internal energy U is a similar integral over u, the internal



energy per gram. For an ideal gasu =3/2 P/p. For radiation and other relativistic
gasesu=3P/p.

The Virial theorem states that -3 integral from 0 to M (P/ p) dm = Q. This is true
regardless of equation of state. Also the integral need not extend all the way to the
surface, but can apply to portions of the star.

For an ideal gas, the Virial theorem more specifically says that Q = —2 U and thus
the total energy E = Q + U = - U = Q/2. Stars supported by ideal gas pressure have a
net binding equal to their internal energy or % of their gravitational binding energy.
The other half of the gravitational binding energy got radiated away during star
formation. One can thus compute a Kelvin Helmholtz time scale for the star,
7=aGM?2/(2RL) which is how long it can shine with luminosity L using gravity as a
source and reaching radius R. For the sun this is about 30 My. Were nuclear
reactions to go out in the sun, it would still shine at about the same L and roghly the
same radius for 30 My. This is also the time scale for a star to make structural (as
opposed to thermal) rearrangements.

Assuming an ideal gas equation of state, one can also derive a Virial temperature for
the sun of about 3 million K. Assuming constant density

3MN, KT _aGM?
2u R

The first law of thermodynamics describes the evolution of energy in the star

% + Pi(l]:s — i where u is the internal energy, the second term is PdV work,
dt dt\ p dm

¢ is the internal energy creation (e.g., by nuclear reactions) and the last term is the

net flux entering or leaving the matter. Integrating this equation gives essentially

the global variation of these quantities in the star, e.g, the integral of ¢ is the total

nuclear power developed by the star. An important consequence is the equation

%{%J =L . —L which describes how the nuclear binding evolves in response to an

imbalance in energy creation by nuclear reactions and luminosity leaving the
surface of the star. If Lnyc is 0 for example, the binding energy becomes more
negative in order to power the star. This means it gets hotter (as shown e.g., in the
above Virial equation for the temperature). If the two L’s are balanced, €2 doesn’t
change. The star’ structure stays roughly the same except for a gradually evolving
composition.

The time scale for the composition to evolve is the nuclear time scale, which is
longest by far for hydrogen burning. Burning heavier fuels gives less energy and the
stars tend to be more luminous too.



The time scale for L and Lnuc to come into global balance is the thermal time scale
(power deposited at the center of a main sequence star equals luminosity leaving
the surface). In some situations, these two may not be balanced, e..g., when the outer
layers of the star are expanding and it is becoming a red giant.

In general, especially on main sequence the time scales are ordered

Tryiro << Tinormar ~ Tt << Ty - The thermal time scale for a star where heat transport

is by radiative diffusion is roughly 7 =~ R? /(Emfpc)szl(p / ¢ which is about 150,000

years for the sun.
Lecture 5

Stars are composed of ionized perfect gases. That the gas is completely ionized, at
least the H and He is not so straightforward because the simplest Saha equation
predicts partial neutrality at the solar center due to the high density. Pressure
ionization makes the gas fully ionized. Again (as in the Stark effect), the electric
fields from the nearby ions reduce the netionization potential making the gas easier
to ionize. Except at their surfaces stars are to good approximation fully ionized
gases.

The pressure integral, which you need not remember verbatim, %J%pp)pvdp tells

0
how to evaluate the pressure in general for an isotropic “perfect” gas (one where
interparticle interactions are negligible except during collisions). Different kinds of
pressure arise from different assumptions from statistical mechanics about dn/dp.
Ideal gas is treated using Maxwell Boltzmann (MB) statistics; radiation by Bose-
Einstein (BE), Fermions by Fermi-Dirac (FD). Each distribution function contains a

4rp’dp for phase space, a statistical weight (usually 2) and an exponential function
describing the occupation of each state. The distribution function is proportional to

-1
(ee”e’gy/” + ‘I,O) for MB (0), BE (-1), and FD (+1) statistics. The different statistics

result from counting the particles differently (distibguishable or indistinguishable)
and other rules like the Pauli exclusion principle for FD and the lack of particle
number conservation for BE.

For an ideal gas, MB statistics is used and the particle number is conserved. The
result is P = nkT. The difficulty in practice is how to evaluate n for a gas with
multiple components including electrons and ions from different elements. It is
convenient to define an abundance variable Y; = Xi/A; where X is mass fraction and A
the atomic mass number of the nucleus - 4 for #He, 12 for 12C, etc. It is the number of
neutrons plus protons in the nucleus. For hydrogen A = 1. The number density of a

given ion is then n, = pN, Y, with Na Avogadro’s number, the number of hydrogen



atoms in a gram of hydrogen. A corresponding value of Yeis defined for the electrons
such that n, = pN,Y_ . In both cases n is the number density per cm3. With these

definitions the ideal gas pressure for a fully ionized plasma can be written
_ pN, kT

ideal —

with 1 = ZYI +Y, . Yeis also defined by charge neutrality (each
M u

nucleus with charge Z contributes Z electrons to the gas) as Y, = ZZI.YI. . You need

not remember these expressions for 1 and Y, for the test.

P
The internal energy per gram of an ideal gas is u= %— . For a relativistic gas
P

u= 35.
)

Using the BE distribution one can similarly derive radiation pressure, Praq=1/3 a T4
(you don’t need to remember the values of a, G, e, ¢, h, or any other fundamental
P, aT*
constants for the test). Since radiation is relativistic u_, = 3-2 =~ The
p p

number density of photons is 20 T3 and is not conserved as the temperature is
changed. The average photon has energy 2.70 kT.

Electrons (and other Fermions) are the hard part because they can be degenerate or
ideal, relativistic or non-relativistic. In general they are always described by FD
statistics, but the “1” in the distribution function becomes negligible at high T. Then,
if their number is conserved, they are an ideal gas.

For degeneracy pressure, a simplifying assumption is complete degeneracy, all
states are filled to a maximum given by the Fermi momentum and no states above

13
3h°n
that are occupied. The Fermi momentum for electrons is p, = [ £ (not

8n
needed for the test) and when the upper bound of the pressure integral is so

restricted one gets P =K (pYe )5/3 and P_ =K _, (pYe )4/3 for non-

non-rel —
relativistic and relativistic electron degeneracy pressure respectively. The values of
K are in the notes and need not be remembered though the dependences on pY, do

need to be remembered. Typically for everything but hydrogen Ye = %. For pure
hydrogen Ye = 1. The electrons become relativistic somewhere between a few x 106
gcm3and 107 g cm-3,

There exist other approaches for solving the general case of partial degeneracy and
partial relativity. In general the solutions involve Fermi integrals and have the right
high T (ideal gas) and low T (degenerate) limits.



An adiabatic expansion (or compression) is one in which no energy flows across the
boundary of the gas. Work can be done or absorbed by expansion and compression

and internal energy can change. du+ P d(1/ p)=0 . Since U= q)(F’ / p) it follows that
o+1

the pressure is a power law of the density P« p * =p’~ . The adiabatic exponent

can be reduced in regions of partial ionization because energy used to ionize atoms

does not go directly into raising the temperature. This reduction in adiabatic

exponent can make these layers hydrodynamically unstable as will be discussed
later.

Lecture 6

Radiation diffuses in stars because of the small temperature gradient that is present.
The mean free path is the distance over which a beam of radiation would be

attenuated by a factor of “e”. Itis ¢ =(no)™" or (px)" where « is the opacity

measured in cm?2 g-1. A rough approximation to the heat transport is given by
condidering two surfaces of temperature T and T + dT broadcasting blackbody

radiation into each other to a depth of /¢ o The temperature difference, dT, is the

temperature gradient dT/dr times this length scale. A more accurate derivation
must integrate over angles or use Fick’s Law for diffusion. Ficks Law states that the

du
flux of diffusing radiation is F= —Dd—;"”dz— KZ—;’: where D is the diffusion

1
coefficient, D =§V€ and K is the conductivity equal to the heat capacity at

mfp

constant volume, Cy. The speed here is ¢, and the heat capacity for radiation is

du ’
C.= d—;id =43aT? . This gives a flux —% act % and an equation for the
Kp

. . N dT 3xp L
temperature gradient required to carry a luminosity L of — = 3 5 -
dr 16rmacT’ 4rnr
This, and its Lagrangian equivalent, is one more basic stellar structure equation. It
can be inverted to give L transported by radiative diffusion for a given temperature

gradient, opacity, density, etc. You do not have to remember this equation.

This derivation assumed that the opacity k was independent of frequency. The
derivation can be repeated using the Planck function to describe the distribution of
blackbody radiation with frequency and the same result is obtained except that
opacities with frequency dependence must be averaged over the temperature
derivative of the Planck function. This “Rosseland mean opacity” is defined in the
notes.



Opacity in nature can have several origins. In general it involves photons interacting
with electrons, either free electrons or electrons bound in atoms. The simplest form
is electron scattering opacity is frequency independent (and therefore temperature
and density independent) so long as the temperature is a small fraction of the
electron rest mass and the electrons are neither degenerate or relativistic.

K, :0.2(1 + XH) cm? g_1 . Modifications, e.g., Klein Nishina corrections, exist to

correct for high temperature effects. In a white dwarf where matter is generate the
electrons lack phase space to scatter into so the electron scattering opacity is
reduced there. But under the same conditions conduction generally dominates

Other opacities involve interactions between the electrons and ions. Free-free
opacity involves electrons near an ion that shares the energy and momentum.
Inverse process to bremsstrahlung. Depends on v . The Rosseland mean depends

on pT " . Opacities with this dependence on temperature and density are called

“Kramer’s opacity”. Free free opacity also depends on the ion abundance ad is
reduced if the metallicity is low.

Bound-bound and bound free opacity involve electrons in the bound states of stoms.
They are complicated to calculate, but so long as the photon energy is comparable to
or greater than the ionization energy, bound free opacity also has a Kramer’s like
dependence on temperature and density. Bound-bound is complicated. Both depend
on metallicity.

Conduction is heat transport by diffusing electrons instead of photons. It is only
important in degenerate matter where the electron mean free path is long.
Otherwise the electron mean free path is small compared with radiation and
conduction is unimportant. Conduction dominates in white dwarf interiors.

In general, we get opacities from tables derived from calculations with millions of
transitions involved. At high temperature electron scattering dominates. At medium
temperature, free free is important. Usually bound free I bigger unless the
metallicity is low. At very low T, H- opacity dominates. We have yet to discuss that.

The radiation pressure gradient cannot exceed that required by hydrostatic
equilibrium or the star will blow apart due. This gives rise to the concept of an
Eddington luminosity, the maximum luminosity a star can have.

:M =1.5x10® ergs™ (MM](&] . For electron scattering opacity,
K K

o}

LEdd
which often dominates at these high luminosities, the value 0.34 is appropriate at
for a hydrogen helium mixture.

Very massive stars approach the Eddington limit and are also fully convective so
they burn their entire mass. Their lifetime is thus a constant, about 3 M y, the
shortest lifetime any star can have. Accretion can also be Eddington limited. Any



higher accretion rate results in radiation that keeps the matter from accumulating.
4rRc

K
but you do not need to remember this equation.

The Eddington limit for accretion is % < ~107° M, y ' for a white dwarf

Lecture 7

Polytropes are analytic models for stars that are characterized by a power law
reaction between pressure and density. P = Kp” where ¥ =(n+1)/n and n is the
“polytropic index”. Given this equation and the equation of hydrostatic equilibrium

one can derive the Lane Emden equation. 11(52 ﬁj = 0" where & and 0 are

£ dE\” d&
dimensionless variables and r = a& and p(r) =p_6"(r) . You need not remember

these equations. « is a radius like variable that depends on P, pc and n.

The Lane Emden equation can be solved either analytically (forn=20, 1, 5) or
numerically to give the value of & where 6 first goes to zero. This is called £, .

a6
dg

a&, is then the radius of the starand A = (52 ] can be evaluated there. There
&

are boundary conditions on & and Z—z namely that 6=1 at £ =0 and Z—g =0 at&=0.

You don’t need to remember these values. For any value of n, the mass of the star is
a given function of a, p, and A, Given the definition of a, the mass can also be

expressed as a function of just p_ and the polytropic constant K. Interestingly for n

=3, p, drops out of the equation and the mass is just a constant given by the

polytropic constant. One can also write down from solutions to the Lane Emden
equation the ratio D_ = p_/ p which is a measure of how centrally concentrated the

star is. It turns out that D_=1 for n = 0 polytropes (which are stars of constant

density). Forn =5, D_= «, and forn =3, itis 54. Asremarked n=0, 1, 5 have

analytic solutions. The n = 0 polytrope corresponds to a star of constant density. Just
as in the ocean the star is incompressible. The pressure varies with radius but the
density is the same everywhere. The n = 1 polytrope is peculiar in that it has a
constant radius no matter what M is. As remarked earlier, n= 3 is interesting
because the solution for mass does not contain the radius. The equation just gives a
unique mass for each value of K.

In the general case one solves for a given M, K. and n to get . From « and K one can
also get p_ and from that p and R (since n gives D )



n-1
There exists a mass radius relation for polytropes, Re< M3 . For n = 1 the radius is
independent of the mass, as noted before. n = 3 is a singularity but evaluating earlier
in the derivation one finds a constant mass independent of R. This is a useful
formula in many contexts, but an important example is the mass-radius relation for
non-relativistically degenerate (y = 5/3) and relativistically degenerate (y = 4/3)
white dwarfs. These are n = 3/2 and n = 3 polytropes respectively. For n = 3/2, the

173
M
radius is proportional to M-1/3, or more specifically R = 8800 km (VOJ if Yo = 1.

This is the mass radius relation for common white dwarfs. Note that they get
smaller as the mass increases. The density thus increases rapidly with the mass.
There thus comes a mass where the electrons are mostly relativistic and one needs
to use the n = 3 solution. This gives a mass, which again for Y. = %2 is 1.456 solar
masses, the Chandrasekhar mass. No white dwarf can be heavier and an accreting
white dwarf approaching this mass would shrink to a point (actualy other things
happen along the way).

There is also an important relation between central pressure and central density for
polytropes, P, =C_ GMmp;”3 where C, is a slowly varying function of polytropic
index n. For ideal gas, which mostly supports all main sequence stars, this gives, a
constant mass T_ o< p;/3 . A contracting star will increase its central temperature in

proportion to the cube root of the density increase. This tendency explains a lot
about stellar evolution. A star attempting to ignite a given fuel will contract and
increase its temperature until it becomes hot enough to ignite a given fuel. If during
the contraction it becomes degenerate first, it will cease contracting and never ignite
the fuel. Since stars of a given mass are hotter at a given density and thus stay non-
degenerate until a higher temperature is reached, this implies the existence of
critical masses. A contracting protostar of less than 0.08 solar masses will never
ignite hydrogen burning at ~107K, but will become a brown dwarf or planet instead.
A contracting helium core of less than 0.45 solar masses will not ignite helium
burning at ~108 K, but will become a helium white dwarf instead. There also exist
limits for carbon ( 8 x 108 K) and oxygen burning ( 2 x 10° K), of 1.06 and about 1.4
solar masses, bt more relevant are the main sequence masses that produce such
cores. Stars below about 8 solar masses will not ignite carbon burning.

This last conclusion has far reaching implications. Stars that don’t ignite carbon
burning develop degenerate CO cores surrounded by thin unstable helium burning
shells. These are “asymptotic giant branch” stars that ultimately eject the low
density envelopes and become first planetary nebulae and then white dwarfs. Stars
heavier than 8 to 10 solar masses (the limit is uncertain) go on to develop cores of
iron that collapse to neutron stars producing supernovae. Broadly speaking stars
over 8 solar masses become supernovae.



The pressure density relation also implies that, for a given mass, more massive stars
will burn their fuels somewhat higher temperatures and lower densities. This has
important implications for energy generation on the main sequence (CNO cycle vs
pp), opacity (electron scattering is more important in massive stars), and convection.

The gravitational binding energy of a polytrope of mass M and index n is

3 GM?
5-n) R
centrally condensed (finite central density, infinite radius). Otherwise it gives a
better was of estimating a which was an undefined constant of order unity in our
previous discussion of the binding energy and Kelvin-Helmholz time). Using n = 3
for the sun gives values much closer to fact, 23 My for the Kelvin-Helmholtz time
for the sun. The best polytropic index for the sun is near 3.5 though n = 3 is
frequently used.

. This has a singularity at n = 5 because the polytrope is infinitely

Assuming that radiation pressure is a constant fraction of total pressure throughout
the star and neglecting convection and degeneracy leads to “Eddington’s standard
model”, an n = 3 polytrope with a unique correspondence between §, the fraction of
pressure due to ideal gas and the mass of the star. This relation, “Eddington’s
quartic equation”, shows that stars of common mass (less than 100 solar masses)
will be supported mostly by ideal gas pressure (S = 1) but extremely massive stars

will be supported by radiation pressure. The Virial theorem can be shown to imply
that stars supported by 100% radiation pressure have zero net energy and are thus
unbound. Unlike other polytropes that did not include the radiative diffusion
equation, Eddington’s standard model also yields a mass luminosity relation that

agrees with observations. For most stars, 8 =1, and L o< M°. The proportionality
constant is even approximately right for the sun. For very heavy stars, Eddington’s

model also predicts correctly that the luminosity approaches the Eddington limit
(see above) and is this proportional to M, not M3.

Eddington’s model also gives relationships between the central temperature and
central density and the central temperature and radius. Without specifying
independently a temperature (e.g., from the need to generate L by nuclear

reactions) or an empirical relation between radius and, say mass (R o M??)

Eddingtons model does not give R or T. separately. This is consistent with the radius
being undefined for an n = 3 polytrope.

Lecture 8

Convection is a much more efficient way of transporting energy than radiative
diffusion, but I only occurs when the radial temperature gradient in the star is so
steep (“superadiabatic”) that an adiabatically expanding, rising plume, after moving
some distance outwards, has a lower density than its surroundings. The criterion is
more physically expressed in terms of a dimensionless measure of how temperature



varies with pressure rather than radius (because the adiabatic condition is a relation
between density and pressure; at a given pressure a hotter gas will have lower
density and be more buoyant). For buoyancy and instability one requires that

M < i which translates into V = dlogT
dlogP v, dlogP

>Vad where Vad can be evaluated

from the equation of state and is 0.4 for ideal gas and 0.25 for radiation. V can also

dT
be written as V=-— T’Dd— where Hp is the pressure scale height (radial distance

r
over which P would decline one e-fold). This is the Schwarzschild criterion for
convection. If composition gradients are present this has to be modified by including
a composition gradient term and that gives the LeDoux criterion for convection. A
zone that is unstable by the Schwarzschild criterion and stable by the LeDoux

criterion is said to be “semiconvective”.

For an ideal gas the Schwarzschild convection criterion can be written
T3
L(r)> 1.22x107"® L m(r) erg s . You don’t need to remember this equation, but
Kp

not that convection is favored by a) high luminosity within a given mass (L(r)/m(r),
b) high opacity c) high density and d) low temperature.

On the main sequence stars above 1.5 solar masses have convective cores (because
of the temperature sensitivity of the CNO cycle makes the energy generation
centrally concentrated) and radiative envelopes. Between 0.5 and 1.5 solar masses
the opposite is true = radiative core and convective outer layers. Below 0.5 solar
masses the whole star is convective on the main sequence.

Heat transport by convection is calculated using “mixing length theory”. The heat
transport is F=vCpCP AT where v is the convective speed, p , the density, Cp, the

heat capacity at constant pressure and AT, the temperature difference between an
adiabatically expanding plume and its surroundings after moving a mixing length.
The mixing length is taken to be a multiplier of order unity times the pressure scale
height. The temperature difference, which is very small, is given by the difference
between the actual temperature gradient and the adiabatic one multiplied by the
mixing length. The convective speed is estimated using the acceleration caused by
the density contrast with the surroundings following adiabatic expansion. The speed
is very subsonic. Putting it all together the convective heat flux is

H.g
2

3/2
pCPToc2 (V - Vad) where « is a multiplier of order unity times the mixing
length. The convective luminosity is 4 & r2 times that. You need not remember this

equation. In the solar convective zone (V - Vad) =AT /T ~10° . Only a very slightly

superadiabatic gradient in the temperature is required to drive very efficient heat
transport.



Other forms of stellar instability were discussed. You need not remember the
equations but the ideas.

Ordinary stars are stable so long asy > 4/3 and a substantial fraction of the pressure
comes from ideal gas pressure (i.e., they are not degenerate). Analysis shows that
the total energy is the negative of the internal energy in the ideal gas component
and under such conditions, expansion leads to cooling and the quenching of any
potential runaway.

The ignition nuclear burning in a gas that is degenerate on the other hand is
violently unstable. There is very little expansion as the temperature rises and what
little expansion there is leads to heating not cooling. The star runs away on a nuclear
time scale which can become very short due to the escalating temperature.
Important examples are the helium core flash in low mass stars and Type la
supernovae.

Burning in thin shells, with geometrical thickness and mass much less than that of
the inner radius of the shell is unstable. The instability ends when the fuel is gone or
expansion becomes a significant fraction of the shell radius. An important example
is helium shell flashes in asymptotic giant branch stars. This instability also
develops on a nuclear time scale.

Hydrodynamical instabilities develop on a hydrodynamical time scale, roughly 1000
s over the square root of the mean density inside the region. Large regions with
adiabatic index below 4/3 are unstable. Such instabilities come about because of
ionization, photodisintegration, or the pair instability. The latter two afflict only
massive stars in their final stages of life. Stars close toy = 4/3 can also be unstable to
pulsation because with almost no net energy, small energy generation can give a
large excursion in radius. If the nuclear energy generation is pulsationally unstable
it is said to the unstable by the epsilon instability.

Stars can also be pulsationally unstable because of the behavior of their opacity. Thi
sis instability by the kappa mechanism. A necessary condition for the kappa

dlogx

mechanism is that >0. That is when the stellar layer is compressed, its

opacity goes up, trapping the radiation that is flowing through the matter building
up an overpressure. In the ensuing expansion the opacity goes down releasing the

trapped radiation and the material falls back growing opaque again. In the case of

"'2) the opacity does not increase with pressure. For

Kramers opacity (k «< pT~
adiabatic expansion this condition can be expressed k, + x,V_, >0 where

kK, and x_ are the powers of P and T upon which the opacity depends.



For an ideal gas K PT%2 and kK, =1x,=—4.5V_ =0.4 and the star is stable
against pulsation. However there are other forms of opacity where x_ is positive
(H- opacity still to be discussed) and if V_ is reduced below 0.23, even Kramers

opacity is unstable.

V_,is substantially reduced in an ionization zone. In the hydrogen and helium

ionization zones it can drop below 0.23 or even 0.1. This is because energy that
might have gone into increasing the pressure goes into an internal heat sink (the
ionization). A particularly interesting case is the Cepheid variables where the He 11
to He III (He* to He**) ionization zone at about 40,000 K lies a short distance below
the photosphere. It must lie deep enough that enough mass participates in the
instability to effectively change the photospheric radius and luminosity of the star

but not so deep that the density is so high that V_, does not go below 0.23 (see plot

in notes). This turns out to require, for a giant-like structure a photospheric
temperature of between 5500 and 7500 K. This gives the Cepheid band in the HR
diagram.

The pulsations occur because for a time the matter falls in and becomes denser
without the pressure rising much due to ionization. Radiation is trapped at the
higher density. Eventually so much radiation is trapped that the stars outer layers
expand again. Now recombination gives back energy and contributes to the
expansion. The cycle continues. The time scale is the hydrodynamical time scale for
the low density envelope which is roughly days. More massive Cepheids are less
dense and have longer time scales. More massive Cepheids also have high
luminosity, hence there is a period-luminosity relation.



