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For an adiabatic expansion or compression 
regardless of equation of state (ideal, degenerate, 
etc.) the first law of thermodynamics gives 

 P = Kργ ad

  

For an ideal gas, fully ionized,

u = φ P
ρ

 = 
3
2

P
ρ

γ ad = φ +1
φ

=5/3 

For a relativistic gas γ ad =4/3.  

In regions of partial  ionization 
(or pair production or photo
disintegration) γ ad  can be

suppressed.

The value of ad varies with the EOS. 

Very roughly (do not use this for anything quantitative): 

  

dP
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= − Gm(r )
4πr 4 ⇒ P ∝m2r −4

                         ρ ∝m / r 3 r −4 ∝ρ4/3m−4/3

so for hydrostatic equilibrium, crudely, P ∝m2/3ρ4/3.

If the global density changes due to expansion or contraction,
leading to new pressure and density, P' and ρ', hydrostatic
equilibrum  suggests
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If the pressure increases more than this, 

i.e., 
P '
P

⎛
⎝⎜

⎞
⎠⎟

> ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

4/3

there will be a restoring

force that will lead to expansion. If it is less, the contraction
will continue and perhaps accelerate.



Now consider an adiabatic compression: 
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 one has stability, 

hydrostatic equilibrium is satisfied. If not, things are unstable.

Thus if γ > 4
3

 the star is stable and if γ < 4
3

 it is not.

This is a global analysis and doesn't necessarily apply
to small regions of the star but illustrates the importance
of γ =4/3.  We will return to this later.

So far we have descriptions of hydrostatic  
equilibrium and the equation of state. Still  
missing: 

•  How the temperature must vary in order to transport 
     the energy that is generated (by both radiative 
     diffusion  and convection). 
 
•  A way of calculating the opacity of stellar matter 

 
•  An explicit description of the relevant nuclear 

and particle physics 
 

•  A technique for solving the resulting differential  
equations 

Radiation Transport 

Because of the high density and long time scales,  
hydrodynamic equilibrium is an excellent description.  
Locally, and frequently globally, thermal equilibrium  
is also a valid assumption. 
 
The radiation field in the optically thick stellar interior 
is thus to high accuracy, given by the Planck function.  
 
Spherical symmetry and isotropy can  be assumed  
(except for rapid rotators). In “radiative” (as opposed to  
“convective”) regions, the heat is transported because  
a small excess of diffusion proceeds in one direction  
owing to the decreasing temperature in that direction,  
but to good accuracy heat is diffusing both ways  
nearly equally. 

Transport by radiative diffusion in a star 

  

From our prior discussions, for blackbody radiation,
we have the Planck function which tells us everything
about the equilibrium radiation

Bν (T,Ω)dν = 2hν 3

c2

dν
ehν /(kBT ) −1

erg cm−2  s−1 Hz−1 Ster−1

The total flux leaving a cm2  comes from integrating this over
solid angle and frequency

                      F= Bν∫ dν∫ dΩ =σT 4 erg cm−2  s−1

It will also be useful to define a monochromatic intensity, Iν (Ω)

with units like Bν (erg cm−2  s−1 Hz−1 Ster−1), but taken to 
describe the energy flux of a beam of radiation with a single 
frequencymoving into a given solid angle.



As radiation passes through 
matter it can be absorbed 
or scattered. 
 
One way of quantifying this  
is by a typical “cross section”  
 for an absorber or scatterer.#
#
The mean free path of a  
given photon is 1/(n)#
where n is the number of  
absorbers/scatterers per cm-3. 

   

A related quantity is the "opacity" κ defined by dI  = - Iκρ dr 
so that I  = I0 exp(−κρr ).The mean free path, , is thus 1/κρ  

since the radative flux declines by one e-fold in that distance. 
Thus nσ =κρ. In fact, σ  and κ  are both functions of the 
composition, temperature, density and frequency.

I I +dI 

T+dT T Clayton 3-2 
page 171 
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Simplified derivation of temperature gradient equation: 

Two blackbody slabs separated  
by a photon mean free path 

net heat flux 

Fright 

  
 = 1

κρ

dT << T 
Fleft 

It is perhaps better to think of the gas as continuous,  
but with a small temperature jump. Radiation emitted 
from the hotter region typically goes a distance l  
before being absorbed. Similarly radiation moves  
from the cooler region the same distance back into 
the hotter region 

T+dT T 

 

One obtains the same  
equations as on the  
previous page 

   

The temperature difference between two layers
is given by the temperature gradient times the 
mean free path of a photon, 

 =1/ κρ( )  so in 1D      dT≈  
dT
dx

  and 

   F = 4σT 3dT =  4σT 3
dT
dx

= 4σT 3

κρ
dT
dx

= acT 3

κρ
dT
dx

 since σ ≡ ac
4

Multiplying F by the area, 4πr2 , gives the luminosity

L(r ) = 4πr 2acT 3

κρ
dT
dr

or

dT
dr

≈ κρ
4πr 2acT 3 L(r )

The accurate result is 
¾ times this 

  

a=7.566 ×10−15  erg cm−3 K−4

=7.566 ×10−15  dyne cm−2 K−4 Pols p.iv
σ = 5.670×10−5  erg cm−2 K−4



Fick’s Law  J=-D∇n

   

Assume an isotropic distribution,  vx = vy = vz

On the average 1/3 of the particles at a boundary
will be moving in the z direction and half of those up
and half down

          Fz ≈ 1
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       where D is the "diffusion coefficient"

              defined as 1
3

v mfp = 1
3

v
1
κρ

  nz−   nz+

Fick’s Law 

  nz− > nz+

 In general Flux = nv

   

 According to Fick's law the  flux of something equals a 
constant times the rate at which something changes 
in space (the gradient)

   J=-D∇n with D=
1
3

v   the "diffusion coefficient"

and n, some quantity (like number density) that is 
diffusing. J is the flux of n across a surface.  Since the only

net gradiant in a spherical star is in the r direction ∇→ ∂
∂r

Pols Chapter 5, Kippenhahn and Weigert 

  

The unts of  D are cm2 s−1 and so the units of J

are cm−2  s−1,  the flux of particles per unit area per
unit time.

   

In particular, an energy  gradient  ∇U in the internal

energy per cm3 gives rise to an energy flux  (erg cm−2  s−1)

Energy Flux = F = -D 
∂U
∂r

Since 
∂U
∂r

=
∂U
∂T
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 with CV  the "heat capacity"

per unit volume (at constant volume)

F = -Κ ∂T
∂r

with Κ  the conductivity = D CV = 1
3

v CV

D has units cm2  s−1; CV =cVρ  has units erg cm−3  K−1, so Κ,

the conductivity, has units erg cm−1 s−1 K−1.



   

The energy we are interested in here is blackbody radiation.

For photons, v = c  and U = aT4, so 
∂U
∂T
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=CV = 4aT 3

The mean free path comes from the definition of opacity

      
dIν
ds

= −κνρ Iν ⇒ Iν = I0 e−s /mfp

mfp  is the distance over which the intensity of a beam of radiation 

decreases by e, hence  = 1
κνρ

. Ignore the frequency dependence

for the moment.

 In terms of the opacity, the conductivity is then

                Κ rad = 1
3

v CV = 4
3

acT 3

κρ
 and the radiative energy flux is

                 Frad = −Krad

dT
dr

 = -
4
3

acT 3

κρ
dT
dr   

and since   Frad =
L(r )

4πr 2 (1D)

 
L(r )

4πr 2 = Krad∇T  = -
4
3

acT 3

κρ
dT
dr

           
dT
dr

= − 3κρ
16πacT 3

L(r )
r 2

In Lagrangian coordinates this is
dT
dm

= 3κ
64π 2acT 3

L(r )
r 4

This is our second major equation for stellar structure
and evolution. It describes heat transport so long as the 
material is not convecting.

Pols 5.17 

¾ times what 
we got before 

   

The same approach can be used with a frequency-dependent flux ,
Hυ , as is necessary to correctly define the opacity   

          Hν = −Dν∇Uν = − 1
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and since
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π
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where we have used a result from lecture 2 that

the π  comes from integration over solid angle
Defining  a mean opacity κ (the Rosseland mean) by
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 gives    F = − 4π
3ρ
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1
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  as before      

but with a new definition of the opacity, κ .

The Rosseland mean opacity is the average of 
1
κν

weighted by the 

function 
dBν

dT
.

  

     Bν (T )= 8πh
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ν 3

ehν /kT −1
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  This weighting function  has a maximum at hν = 3.83 kT
  

A condition for the validity of this equation is 
that the background conditions vary only a tiny bit

over a typical scattering length  =
1
κρ

.

In the sun for example the typical mean free path is
0.1 cm. The temperature of the sun varies

from 107  K to essentially zero over a distance of 7 x 1010  cm
so in a scattering length the temperature varies only about 

10−4  K. Variations in the luminosity, opacity, and density
are similarly small.

So the sun can be treated as a blackbody locally to 
high precision.  The diffusion equation can be used
and "local thermodynamic equilibrium" (LTE) prevails.

   

Sources of opacity :(Pols 59ff)

1) Electron scattering - frequency-independent
    at low frequencies. Thomson cross section.

                    σ e =
8π
3

e2

mec
2

⎛

⎝⎜
⎞

⎠⎟
= 6.652 × 10−25   cm2

       which when multipled by the number of electrons in 
        a given mass of gas, ρNAYe  and using nσ = κρ gives 

κ es =NAYeσ e = 0.40 Ye = 0.20 1+ XH( ) cm2   g−1

since Ye = ZiYi = XH +
Zi

Ai

X i =
Z≥2
∑∑ XH + 1

2
Xi

Z≥2
∑

= XH + 1
2

1− XH( )= 1
2

1+ XH( )

http://en.wikipedia.org/wiki/Thomson_scattering 
•  The peak of the radiation spectrum is at h =  4.965 kT 
(Wien’s law). When this becomes greater that about  
0.1 mec2 = 51 keV, so about 108 K,   the Thomson  cross 
section must be corrected for the recoil of the electron  
 (Klein-Nishina corrections).  
 

Modifications to electron scattering: 

   

ε = hν / mec
2

σ KN = σT hom 1−2ε + 26
5

ε 2 − ...
⎛
⎝⎜

⎞
⎠⎟

ε  1

σ KN = πre
2 1+ 2 lnε

2ε
⎛
⎝⎜

⎞
⎠⎟
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http://physics.indiana.edu/~shylee/p672/EM_scattering_1.pdf 



•  Above about 109 K (kT = 86 keV) there are also  
corrections for the production of electron-positron  
pairs which increase the opacity.  
 

•  At high density, as in white dwarfs, the phase space  
for the scattered electron may be reduced by  
degeneracy. This reduces the electron scattering 
opacity 
 

•  At lower temperature the ionization must be 
explicitly computed using the Saha equation 
 

•  Below about 107 K other physics comes into play 
that involves bound states of atoms 

Modifications to electron scattering: 2) 

Similar to electron scattering but modified (increased) 
by the presence of the ion which absorbs some of the  
momentum and energy. Will depend on the abundances  
of both the electrons and ions. 

  

The efficiency of such an absorption by a single

electron is proportional to Z i
2ν −3with Z i  the charge on the ion. 

The total efficiency depends on the number density of electrons
and also the time the electron and ion stay sufficiently close  for the 
interaction to occur. This depends on the average speed of the 

electron, Δt ∝1/v with v = 3kT / me( )1/2
so the cross section per ion

                σ ff ∝ ne T −1/2Zi
2ν −3

See discussion of Kramer's opacity by Frank Shu on the 
class website.
Since nσ =κρ

ρκ ff = σ ff ni
i
∑ ∝ neT

−1/2Zi
2ν −3 ni

i
∑

  

Aside :

If κν ∝ ν −n  the Rosseland mean integral gives  κ ∝ T −n



  

So, for the Rosseland mean opacity (leaving off  )

κ ff =
ne

ρ
ni

i
∑ T −1/2Zi

2ν −3 ∝
ρNAYe

ρ
T −7/2 ρNAYiZi

2

i
∑

    ∝ ρYeT
−7/2 XiZi

2

Aii
∑ ∝ ρT −7/2 Xi

Aii
∑ = 1

A

Any opacity of this form ( ∝ ρT−7/2) is referred to as a "Kramers 
opacity". Assuming full ionization and including the leading 
order composition dependence

       κ ff =7.5×1022Ye

Z 2

A
ρT −7/2 Clayton 3-170

≈ 7.5×1022 (1+ X )
2

Z 2

A
ρT −7/2   cm2   g−1     Close to Pols 5.32        

The interactions with more highly charged nuclei are 
stronger, but weaker if the mass of the nucleus is larger. 

At very high temperatures the free-free opacity 
becomes negligible since the extra interaction 
between the ion and electron is negligible  
compared with the energy of the photon,  
h~ 4 kT. 
 
The free-free opacity then gradually becomes equal 
to the electron scattering opacity. 
 
Similarly at low density the ion spacing is large and  
the electron ion interaction is diminished. 

3) Bound-bound and bound-free opacity Bound-free opacity 

  
κ bf =4.3 ×1025 1+ X( ) ZρT −7/2 cm2 g−1

This is quite complicated to calculate since it 
depends on numerous transitions in many atoms. 
Classical considerations again give a cross section 
for bound-free absorption that again depends on -3   
as long as h > the ionization potential of the atom. 
For T >> 104  K, where bound-free is important, 

where X is the hydrogen mass fraction and Z the  
mass fraction of all elements heavier than helium  
(the metallicity). Unless Z is very small, this is much 
larger than the free-free opacity (bf ~ 103 Z ff). 
Note again the Kramer’s-like dependence on T 
and #



Bound-bound opacity 

Again the calculation is complex and composition dependent. 
In the general case one has to include millions 
of transitions in the states of many elements and 
many ionization stages of those elements. Especially 
important is the element iron because of its large 
abundance and many atomic levels. 
 
Each pair of levels can serve as a resonance for the  
absorption of radiation. The levels are broadened by 
collisions and thermal motion.  
 
Bound-bound opacity is generally negligible above a  
few times 106 K 

http://www.ast.cam.ac.uk/~bdavies/Stars2/Stars2_Lecture8.pdf 

From Frank Shu, see also Prialnik p 51 

The straight line n a log-log plot indicates a power law. For 
Kramers, the slope is -7/2. 

Figure 3 -15 from Clayton  



4) Conduction 

In a star heat may be transported by radiative diffusion, 
convection and conduction. We will treat convection  
separately. 
 
Conduction is the transport of heat by diffusing electrons. 
As a diffusion process it can be treated analogously 
to radiation, but it is electrons that are carrying the  
energy not photons. It is described by a conductive 
opacity. 
 
Usually the mean free path of electrons is much shorter  
than photons and radiative diffusion dominates. At high 
density however a) the the path length of electrons is 
increased by the effects of degeneracy (full phase space 
in the outgoing channel) and b) there are more electrons. 

  

Conduction thus can dominate in situations where
the electrons are degenerate, e.g. white dwarfs. It
is enhanced by a)high density b) low temperatureand
c) lower charges on the nuclei that the electrons are 
scattering off of. An approximation to κ is given by 
Pols 5.35. Note that small κ implies long pathlength
and thus high conductivity.

κ cond ≈ 4.4×10−3
Zi

5/3 Xi / Ai
i
∑

1+ X( )2

T / 107( )2

ρ / 105( )2 cm2 g−1

Contours of constant opacity (OPAL); red line is the sun 



Metallicity affects opacity and this is one of the  
main ways it enters into stellar evolution. 
 
Because of the differing opacity, energy generation, 
and mass loss, stars of low metallicity will be different 
from those of solar composition.  

Opacity vs T for 
60 solar mass 

models of various 
metallicities 

(Cantiello et al  
2009, A&A) 

http://cdsweb.u-strasbg.fr/topbase/OpacityTables.html 

Nowadays stellar evolution codes use tables  
of opacities that have been generated off-line that  
include all the processes we have mentioned – 
electron scattering, free-free, bound-free, bound-bound. 
An exaple tablulation as a function of X, Y, and Z can 
be found at 
 

The Eddington Luminosity 

There is an upper limit to the amount of radiation 
that can flow through a star by radiative diffusion  
without making the matter move.  
 
Deep inside the star this excess power can result in  
convection, although there is an upper limit to what 
convection can carry too.  Closer to the surface such 
high luminosities drive very rapid mass loss. 
 
Since luminosity on the main sequence is generally 
sensitive to Mn with n > 1, there comes a limiting 
mass where the star cannot stay bound for long 

  

In a region with appreciable radiation pressure there 
is a radiation presure gradient

           
dPrad

dr
= 4

3
aT 3 dT

dr
And if that region is transporting energy by radiative diffusion

            
dT
dr

= 3κρ
16πacT 3

L(r )
r 2

So

              
dPrad

dr
=− κρ

4πc
L(r )
r 2

This cannot exceed the pressure gradient given by 
hydrostatic equilibrium

                
dPrad

dr
< dP

dr
=GMρ

r 2



   

Interestingly the ρ /r2  term cancels and one has

            L < 4πGmc
κ

= LEd =1.5 ×1038 M
M
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where LEd  is the Eddington luminosity. 

Often, for  situations where L approaches LEd , the 
temperature is so high that electron scattering opacity 
dominates. κ = 0.34 cm2  g−1is appropriate for X = 0.7. 
For pure helium, carbon, oxygen,  etc. κ =0.2 cm2  g−1.

   

Interestingly the Eddington luminosity also
sets an upper bound to the rate at which stars
can accrete mass. Accretion liberates the gravitational
potential energy but can only occur at a rate smaller 
than that which gives an Eddington luminosity 
(at least in 1D)

GM M
R

< LEd = 4πGMc
κ

dM
dt

< 4πRc
κ

          e.g., for a WD with R = 5000 km

                                                    
dM
dt

< 8.8 ×10−6  M    year−1

The Eddington Accretion Rate 

   

And we shall see later these considerations also 
set a lower bound to the main sequence lifetime 
of a star.

Extremely massive stars have luminosities 
approaching LEd . They are almost fully convective

and thus burn almost their entire mass on the 
main sequence

                  τEd =
(6.8×1018 erg/gm)(1.99×1033  gm)M/M

1.5 ×1038 M/M erg/sec

= 9.0 ×1013 sec   =   2.9 million  years

The Eddington Lifetime 

Appendix 

GK  Radiation transport 



This is the equation  
of radiative transfer 

  

d I
ds

= −κρ I + j where j is a source of radiation

 So I is the original beam being absorbed and j
  is a source of new energy being added to the beam
  in a medium that is in thermal equilibrium

Define S = 
j

κρ

then for τ =κρs
d I
dτ

= − I +S

3) Or following Glatzmaier and Krumholz (6),   
use the equation of radiative transfer. (skipped in class) 

http://www.cv.nrao.edu/course/astr534/Radxfer.html 

 τ =κ ρ s

  

In thermal equilibrium with no Tgradient
in a uniform, opaque medium the radiative flux 
has to be given by the Planck distribution

d I
dτ

= 0 S = I =Bν (T ) = 2hν 3

c2

⎛
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⎞
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1
ehν /kT −1

 
This remains true for both terms to first order in 
the presence of a small temperature gradient.

  I  is going to remain close in value to S and both
  will be approxiately B

  

dI(z,θ)
ds

= dI(z,θ)
dz

Cos(θ) = κρ S(T )− I(z,θ)⎡⎣ ⎤⎦

which can be rewritten

I(z,θ)=S(T )−Cosθ
κρ

dI(z,θ)
dz

 

  

z is in the radial direction.
   The ray propagates in the s direction and has a 
component in the radial direction: 

        Cos θ =
dz
ds

 

so ds = 
dz

Cosθ
Transfer equation: 

Introduce some explicit angle dependence and enforce 
spherical coordinates, consider a ray propagating  
at an arbitrary angle to a radial  

  

Nothing new so far.  Now recognize that the 
second term is very small (I  is very nearly constant 
over short distances) and that S(T) is the Planck 
function, B(T), so write the beam flux as Plankian plus a
small perturbation

                 I(z,θ)=B(T )+ i(z,θ) i(z,θ) << B(T )
but also from the previous page

                I(z,θ) = S(T )− Cosθ
κρ

 
dI(z,θ)

dz
The source function is S(T )=B(T )so

B(T )+ i(z,θ) =B(T )− Cosθ
κρ

 
dI(z,θ)

dz

i(z,θ) =− Cosθ
κρ

 
dI(z,θ)

dz

=− Cosθ
κρ

 
d
dz

B(T )+ i(z,θ)( ) ≈ − Cosθ
κρ

 
dB(T )

dz
neglecting the derivative of the small term



  

i(z,θ) ≈ −Cosθ
κρ

dB(T )
dz

By making the length scale small enough 
≈ becomes = 

I(z,θ)=B(T )−Cosθ
κρ

dB(T )
dz

  

Hν (z) = I(z,θ) Cos(θ)dΩ∫ nb. z = r

= B(T ) −Cosθ
κνρ

dB(T )
dz

⎡

⎣
⎢

⎤

⎦
⎥ Cosθ dΩ∫ B(T ) is isotropic

= − Cosθ
κυρ

dB(T )
dz

⎡

⎣
⎢

⎤

⎦
⎥ Cosθ dΩ∫

=− 2π
κυρ

dB(T )
dz

Cos2θSinθ dθ
0

π

∫

=− 2π
κυρ

dB(T )
dz

Cos2θ (dCosθ)
−1

1

∫

= − 4π
3κνρ

dB(T )
dz

= − 4π
3κνρ

dB(T )
dT

dT
dz

To compute the flux integrate the intensity over angles 
and frequencies like we did for radiation pressure. 

  dΩ = 2π Sinθ dθ

  
⇒∫

x3

3
⎤

⎦
⎥
−1

1

= 2
3

  

F = −4π
3ρ

∂T
∂z

1
κν0

∞

∫
dB
dT

dν                      F = Hν dν∫
Define as before in 2) :

1
κ

=
κ −1

0

∞

∫ dB
dT

dν

0

∞

∫ dB
dT

dν
= π

4σT 3 κυ
−1

0

∞

∫
dB
dT

dν

Then:

F =− 16σT 3

3κρ
∂T
∂z

 =− 16σT 3

3κρ
dT
dr

L(r )= -4πr2 16σT 3

3κρ
dT
dr

Rosseland 
Mean 

as before 


