
Lecture 12

Advanced Stages of Stellar Evolution – II
Silicon Burning and NSE 



Silicon Burning
Silicon burning proceeds in a way different from any nuclear process

discussed so far. It is analogous, in ways, to neon burning in that it
proceeds by photodisintegration and rearrangement*, but it involves many
more nuclei and is quite complex.

The reaction 28Si + 28Si  à (56Ni)* does not occur owing to the large 
Coulomb inhibition. Rather a portion of the silicon (and sulfur, argon, etc.)
�melt� by photodisintegration reactions into a sea of neutrons, protons, and 
alpha-particles. These lighter constituents add onto the remaining silicon 
and heavier elements, gradually increasing their mean atomic weight until 
species in the iron group are most abundant.

Carbon burning       Heavy ion fusion
Neon Burning          Photodisintegration rearrangement
Oxygen burning       Heavy ion fusion
Silicon burning         Photodisintegration rearrangement

*Basically the temperature threshold for removing an alpha from 24Mg is reached before
that of 28Si+28Si



Initial Composition

The initial composition is mostly Si and S, but which isotopes of Si 
and S dominate depends upon whether one is discussing the inner 
core or less dense locations farther out in the star. It is quite different 
for silicon core burning in a presupernova star and the explosive 
variety of silicon burning we shall discuss later.

In the center of the star, one typically has, after oxygen burning, and
a phase of electron capture that goes on between oxygen depletion and 
silicon ignition:

30Si, 34S, 38Ar and a lot of other less abundant nuclei. High η

Farther  outside of the core where silicon might burn explosively, one
has species more characteristically with Z = N

28Si, 32S, 36Ar, 40Ca, etc.

Historically, Si burning was discussed for a 28Si rich composition. Low η 



Neutron excess after 
oxygen core depletion
in 15 and 25 solar mass
stars.

The inner core is becoming
increasingly �neutronized�,
especially for the lower 
mass stars. The process 
accelerates during silicon
burning

The nucleosynthesis of the 
inner core would be very strange
were it to be ejected (it is not).
η ~ 0.002 – 0.004 is good. 0.01
is not
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η

η



Quasi-equilibrium
This term is used to describe a situation where groups of 

adjacent isotopes, but not all isotopes globally, have come into 
equilibrium with respect to the exchange of n, p, a, and g.

   It  began  in  neon  burning  with  20Ne + γ! 16O + α and
continues to characterize an increasing number of nuclei during
oxygen burning.  In  silicon burning, it becomes the rule
rather than the exception.
     A typical "quasiequilibrium cluster" might include the 
equilibrated reactions :

28Si! 29Si! 30Si! 31P! 32S! 28Si
         n           n           p           p         α

By which one means    Y(28Si) Yn ρλnγ (28Si) ≈ Y(29Si) λγ n (29Si)

Y(30Si)Ynρλnγ (29Si) ≈Y(30Si)λγ n (30Si)

                                etc.



24 45 46 60 (at least)A A≤ ≤ ≤ ≤

Late during oxygen burning, many isolated clusters grow and merge
until, at silicon ignition, there exist only two large QE groups

Reactions below 24Mg, e.g., 20Ne(a,g)24Mg and 12C(a,g)16O are, in general,
not in equilibrium with their inverses at oxygen depletion (exception, 
16O(a,g)20Ne which has been in equilibrium since neon burning).

Within the groups heavier than A = 24, except at the boundaries of the clusters,
the abundance of any species is related to that of another by 
successive application of the Saha equation.
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The situation at the end of oxygen burning is that 
there are two large QE groups coupled by non-equilibrated
links near A = 45.

Early during silicon burning these two groups merge 
and the only remaining non-equilibrated reactions are for
A < 24 (Mg).

45A >

24 45A≤ ≤

The non-equilibrated link
has to do with the double
shell closure at Z = N = 20



  

Y ( A Z ) = C( A Z ,ρ,T9 )Y (28 Si)Yα
δαYp

δ pYn
δ n

where δα = largest integer ≤ Z-14
2

δ n = N −14− 2δα

δ p = Z −14− 2δα e.g.,35 Cl 17 protons; 20 neutrons

δα =1 δ p = 1 δ n = 2
40K  19 protons  21 neutrons

δα = 2 δ p = 1 δ n = 3

Within that one group,(A > 23), which contains 28Si and the vast 
majority of the mass, one can evaluate any abundance 
relative to e.g., 28Si

Need 6 parameters: Ya, Yp, Yn and
Y(28Si) plus T and r, but …



C(A Z ) = ρNA( )
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where

                         Q =  BE(A Z ) − BE(28
Si) − δαBE(α )

i.e., the energy required to dissociate the nucleus AZ into
28Si and d a alpha particles. The binding energy of a neutron or
proton is zero.
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where 328.36  = BE(α )/kT

This reduces the number of independent variables to 5, but
wait …

Moreover there exist loops like:

p

p

n              n

a



60 24

60 24

1

( )

i i

A

i i i

A

AY

N Z Y η

≥ ≥

≥ ≥

≈

− ≈

∑

∑

The large QE cluster that includes nuclei from A = 24 through 
at least A = 60 contains most of the matter (20Ne, 16O, 12C, and a
are all small), so we have the additional two constraints

The first equation can be used to eliminate one more 
unknown, say Yp, and the second can be used to replace
Yn with an easier to use variable, η. Thus 4 variables now 
specify the abundances of all nuclei heavier than magnesium . 
These are

r, T9, h, and Y(28Si)

mass conservation

charge conservation



             QE

       24 A 60≤ ≤

28Si
24Mg+α

20Ne+α

16O+α

12C+α

3α

7α
28

9, , , ( ) QET Y Siρ η ⇒

For low η, the cluster evolves at a rate given by 24Mg(g,a)20Ne

The photodisintegration of 24Mg
provides a�s (and n�s and p�s since
Ya =CaYn

2Yp
2) which add onto 

the QE group gradually increasing
its mean atomic weight. As a 
result the intermediate mass group,
Si-Ca gradually �melts� into the 
iron group.

  
Y ( A Z ) = C( A Z ,ρ,T9 )Y (28 Si)Yα

δαYp
δ pYn

δ n



Nature of the burning:
Lighter species melt away while the iron group grows



But this assumes 28Si burns to 56Ni  ( small η approximation)

Energetics:

Suppose 28Si burns to 56Ni. To rough approximation
2(28Si)  ->   56Ni          (n.b. not fusion of 2 silicons)

qnuc = 9.65 x 1017 [1/2 (483.982 -236.536)/28]
= 1.9 x 1017 erg g-1 (not much)



This is misleading because, except explosively
(later), silicon burning does not produce 56Ni. There has 
been a lot of electron capture during oxygen burning and
more happens in silicon burning. The silicon that burns is 
not 28Si, but more typically 30Si.

 

E.g., Si ignition in a 15 M


star      η
c
≈0.07 Y

e
≈ 0.46

        Si depletion ηc ≈0.13 Y
e
≈ 0.44

Under these conditions silicon burning produces 54Fe, 56Fe, 58Fe and

other neutron rich species in the iron group.

 Suppose 
56

30
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 30Si   → 56Fe

      qnuc  =  9.65 ×  1017 492.26( ) / 56− 255.62( ) / 30⎡⎣ ⎤⎦
             =  2.6 ×  1017  erg g-1  which is closer to correct for Si 

                 core burning  than 1.9 ×  1017  erg g−1

i.e., qnuc = 9.65×10
17 Xi

Ai
BE(Ai )∑



An approximation to energy generation is derived in 
Appendix 2. See also next page

It depends on T47

This approximation implies that Si buring will achieve 
balanced power at 3.5 billion degrees with a generation rate 
approximately 1013 erg g-1 s-1

The approximate lifetime is thus 

q ΔX (28Si)
εnuc

∼
2.6 ×1017 (1)

1013 ~ 7 hours

Shell burning and convection can lengthen this to
days to weeks





Nucleosynthesis

Basically, silicon burning in the star�s core turns the products of 
oxygen burning (Si, S, Ar, Ca, etc.) into the most tightly bound nuclei 
(in the iron group) for a given neutron excess, η.

The silicon-burning nucleosynthesis that is ejected by a super-
nova is produced explosively, and has a different composition dominated
by 56Ni.

The products of silicon-core and shell burning in the core are both so neutron-
rich (η so large)  that they need to be left behind in a neutron star or
black hole. However, even in that case, the composition and its evolution
is critical to setting the stage for core collapse and the supernova explosion 
that follows.



Following Si-burning at the middle of a 25 solar mass star:

54Fe        0.487
58Ni        0.147
56Fe        0.141
55Fe        0.071
57Co       0.044

Neutron-rich nuclei in the iron peak.

Ye =  0.4775

Following explosive Si-burning in a 25 solar mass supernova, interesting

species produced at Ye = 0.498 to 0.499.

44Ca            44Ti
47,48,49Ti      48,49Cr
51V             51Cr
55Mn           55Co

50,52,53Cr      52,53Fe
54,56,57Fe      56,57Ni
59Co             59Cu
58,60,61,62Ni    60,61,62Zn

product parent

Silicon burning nucleosynthesis

44Ti and 56.57Ni are important

targets of γ-ray astronomy



25 Solar Mass
Pop I

at Si-depletion
(Woosley and 
Heger 2007)

This part
will collapse
and make 
a shock

Fe
Si O He

H

η~0.002



Nuclear Statistical Equilibrium
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As the silicon abundance tends towards zero (though it 
never becomes microscopically small), the unequilibrated
reactions below A = 24 finally come into equilibrium

The 3a reaction is the last to equilibrate. Once this occurs,
every isotope is in equilibrium with every other 
isotope by strong and electromagnetic reactions
(but not by weak interactions)



In particular, Y(28Si) = f (T ,ρ)Yα
7  with the result that now

only 3 variables, ρ, T9,and η  specify the abundances 

of everything

                                  Y(AZ ) = C(AZ ,ρ,T9 ) Yn
NYp

Z

C(AZ ,ρ,T9 ) = ρNA( )A−1
C '(AZ ,T9 )

C ' (AZ ,T9 )=
G(AZ ,T9 )

2A
θ1−A exp BE(AZ ) / kT⎡⎣ ⎤⎦

θ =5.943 × 1033T9
3/2

G(AZ ,T9 ) is the temperature-dependent

                                              partition function.
At low T

             G(AZ ,T9 ) = 2Ji +1( )∑ e−Ei /kT

At high T, though (see earlier discussion of nuclear level density)

G(AZ ,T9 )≈ π
6akT

ea(kT )

a ≈ A
9

MeV-1



Until the temperature becomes very high (T ≥1010K  )
The most abundant nuclei are those with large binding energy
per nucleon and "natural" values of η. For example,

                 η  = 0         56Ni

                        0.037   54Fe

                        0.071    56Fe
                            etc.

In general, the abundance of an isotope peaks at its
natural value for η. E. g.,

              η(54Fe)   =  
N − Z
A

= 28 - 26
54

=0.0370

η(56Fe)   =  
N − Z
A

= 30 - 26
56

=0.0714



The resultant nucleosynthesis is most sensitive to η.



True Equilibrium 

If the weak interactions were also to be balanced, 
(e.g., neutrino capture occurring as frequently on the daughter
nucleus as electron capture on the parent), one would have a 
state of true equilibrium. Only two parameters, r and T, would 
specify the abundances of everything. The first time this occurred
in the universe was for temperatures above 10 billion K in the Big 
Bang.

However, one can also have a dynamic weak equilibrium where
neutrino emission balances anti-neutrino emission, i.e., when

0
e

dY

dt
=

This could occur, and for some stars does, 
when electron-capture balances beta-decay globally, but not on
individual nuclei. The abundances would be set by ρ and T, but
would also depend on the weak interaction rate set employed.



Weak Interactions

Electron capture, and at late times beta-decay, occur for a variety of
isotopes whose identity depends on the star, the weak reaction rates
employed, and the stage of evolution examined. During the late stages
it is most sensitive to η, the neutron excess. 

Aside from their nucleosynthetic implications, the weak interactions
determine Ye, which in turn affects the structure of the star. The 
most important isotopes changing Ye are not generally the most abundant, 
but those that have some combination of significant abundance and 
favorable nuclear structure (especially Q-value) for weak decay.

From silicon burning onwards these weak decays provide neutrino
emission that competes with and ultimately dominates that from
thermal processes (i.e., pair annihilation).



He – depletion
O – depletion
PreSN

25 M

solar metallicity



He – depletion
O – depletion
PreSN

25 M

zero initial metalicity



The distribution of neutron excess, h,
within two stars of 25 solar masses
(8 solar mass helium cores) is 
remarkably different. In the Pop I
star, h is approximately 1.5 x 10-3

everywhere except in the inner 
core (destined to become a collapsed
remnant)

In the Pop III (Z = 0) star the neutron 
excess is essentially zero at the end of helium
burning (some primordial nitrogen was created)
Outside of the core h is a few x 10-4, chiefly 
from weak interactions during carbon burning.
Note some primary nitrogen production at the 
outer edge where convection has mixed 12C
and protons.

lo
g 
η

Interior mass

Interior mass

lo
g 
η



Si-depletion Si-shell burn Core contraction PreSN

T(109 K)                      3.78                         4.13                        3.55                          7.16
ρ (g cm-3)                   5.9 x 107 3.2 x 108 5.4 x 108 9.1 x 109

Ye 0.467                       0.449                      0.445                        0.432

e-capture                     54,55Fe                      57Fe, 61Ni              57Fe, 55Mn                  65Ni, 59Fe

b-decay                     54Mn, 53Cr                 56Mn,52V               62Co,58Mn                  64Co, 58Mn

O-depletion O-shell Si-ignition Si-shell

T(109K)                 2.26                            1.90                       2.86                       3.39
ρ(g cm-3)              1.2 x 107    2.8 x 107                       1.1 x 108                          4.5 x 107

Ye 0.498                        0.495                     0.489                     0.480

e-capture                35Cl, 37Ar                 35Cl, 33S                  33S,35Cl                  54,55Fe

b-decay                    32P, 36Cl                  32P,36Cl                  32P, 28Al                 54,55Mn                

15 solar mass star  (Heger et al 2001)
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 Presupernova Star (typical for  9 - 130 M


)

O,Mg,Ne
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240,000 L





(note scale breaks)





As silicon shells, typically one or at most two, burn out, the iron core
grows in discontinuous spurts and approaches instability.

Pressure is predominantly due to relativistic electrons. As they 
become increasingly relativistic, the structural adiabatic index
of the iron core hovers precariously near 4/3. The presence of non-
degenerate ions has a stabilizing influence, but the core is rapidly 
losing entropy to neutrinos and becoming degenerate making the 
concept of a Chandrasekhar Mass relevant. 

In addition to neutrino losses there are also two other important 
instabilities:

• Photodisintegration – which takes energy that might have provided
pressure and uses it instead to pay a debt of negative nuclear
energy generation.

• Electron capture – since pressure is dominantly from electrons,
removing them reduces the pressure.



Photodisintegration:

  

Yα = Cα (T9 ,ρ) Yn
2Yp

2

C
α
=

1

2
(5.94 × 1033 )−3 ρ 3T

9

9/2 exp(328.36 / T
9
)

where 328.36  = BE(α )/kT ⇒ Cα  increases rapidly as T ↓

from earlier in this lecture

Setting Yα = 1/8 (i.e., X = ½ divided by 4) and Yp=Yn=1/4
gives the line for the helium-nucleon transition on the 
previous page.

The Ni-α transition is given by Clayton problem 7-11 and 
eqn 7-22. It comes from solving the Saha equation for NSE
(see previous discussion these notes) for the case 

X(
56
Ni)= Xα =0.5⇒Y (

56
Ni)=1/112; Yα =1/ 8

Y (
56
Ni)=C56(T9 )ρ

12
Yα
13



See also Clayton Fig 7-9 and discussion

Illiadis

Typical presupernova
central conditions

The transition from the 
iron group to He and
especially from He to
2n + 2p absorbs an
enormous amount of 
energy.

Figure needs correcting
for high temperature
nuclear partition
functions. 

Dominant constituent in 
NSE (η approximately 0)



The photodisintegration of one gram of 56Ni to one gram of
α-particles absorbs:

  

q
nuc

= 1.602×10−6
N

A
(δY

i
)(BE

i
) − qν erg/gm∑

= 9.64×1017 −
1

56
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⎢
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= −1.51×1018  erg g−1

Similarly, the photodisintegration of one gram of α’s to one gram of
nucleons absorbs:

q
nuc

=9.64×1017 −
1

4

⎛
⎝⎜

⎞
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28.296( ) + 0
⎡

⎣⎢
⎤

⎦⎥

=−6.82×1018  erg g−1

essentially undoing all the energy released by nuclear reactions
since the zero age main sequence.



Electron capture
The pressure and entropy come mainly from electrons, but as the 

density increases, so does the Fermi energy, eF. The rise in eF
means more electrons have enough energy to capture on nuclei 
turning protons to neutrons inside them. This reduces Ye which in
turn makes the pressure and entropy at a given density smaller.

( )
1/3

7
1.11 MeV

F e
Yε ρ=

By 2 x 1010 g cm-3, eF= 10 MeV which is above the capture 
threshold for all but the most neutron-rich nuclei. There is also briefly 
a small abundance of free protons (up to 10-3 by mass) which 
captures electrons. 
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What about degeneracy? Can the core be supported by
electron degeneracy pressure and form a stable (Fe) dwarf?
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Because of increasing degeneracy the concept of a Chandrasekhar
Mass for the iron core is relevant – but it must be generalized.

0 implies degeneracyη >



The Chandrasekhar Mass
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Traditionally, for a fully relativistic, completely degenerate gas:
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This is often referred to loosely as 1.4 or even 
1.44 solar masses

see lecture 1



BUT
1) Ye here is not 0.50  (Ye is actually a function

of radius or interior mass)

2) The electrons are not fully relativistic in the 
outer layers (g is not 4/3 everywhere)

3) General relativity implies that gravity is stronger 
than classical and an infinite central density is not 
allowed (there exists a critical r for stability)

4) The gas is not ideal. Coulomb interactions reduce
the pressure at high density

5) Finite temperature (entropy) corrections

6) Surface boundry pressure (if WD is inside a 
massive star)

7) Rotation

Effect on MCh



Relativistic corrections, both special and general, are treated by 
Shapiro and Teukolsky in Black Holes, White Dwarfs, and Neutron Stars
pages 156ff.  They find a critical density (entropy = 0).

2

10 -30.50
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Above this density the white dwarf is (general relativistically)
unstable to collapse. For Ye = 0.50 this corresponds to a mass

2/3
1

1.415 M

in general, the relativistic correction to the Newtonian value is
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Coulomb Corrections

Three effects must be summed – electron-electron repulsion, ion-ion
repulsion and electron ion attraction. Clayton p. 139 – 153 gives a 
simplified treatment and finds, over all, a decrement to the pressure
(eq. 2-275)

  

ΔP
Coul

= −
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Fortunately, the dependence of this correction on ne is the same
as relativistic degeneracy pressure. One can then just proceed to 
use a corrected
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Putting the relativistic and Coulomb corrections together

with the dependence on Y one has

                         M 1.38 M   for C (Y 0.50)

                                 = 1.15  M for Fe    (Y

= =


 e

e

26
0.464)

56

                                = 1.08  M   for Fe-core with <Y 0.45

= =

>≈


  

So why are iron cores so big at collapse (1.3 - 2.0 M


) and

why do neutron stars have masses ≈1.4 M


?
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For 3, 4 / 3,  relativistic degeneracy
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(Clayton 2-48)
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Finite Entropy Corrections

Chandrasekhar (1938)
Fowler & Hoyle (1960)  p 573, eq. (17)
Baron & Cooperstein, ApJ, 353, 597, (1990)



In particular, Baron & Cooperstein (1990) show that 
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and since  a first order expansion gives
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And since, in the appendix to these notes we show

se =
π 2kTYe
ε F

(relativistic degeneracy)

one also has
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Here MCh
0 incluedes all other non-thermal corrections

The entropy of the radiation and ions also affects MCh, but much less.

This finite entropy correction is not important for 
isolated white dwarfs. They�re too cold. But it is very important
for understanding the final evolution of massive stars.



Because of its finite entropy (i.e., because it is hot)
the iron core develops a mass that, if it were cold,
could not be supported by degeneracy pressure.

Because the core has no choice but to decrease its
electronic entropy (by neutrino radiation, electron
capture, and photodisintegration), and because its
(hot) mass exceeds the Chandrasekhar mass, 
it must eventually collapse.



E.g., on the following pages are excerpts from the final day in the 
life of a 15 M⊙  star. During silicon shell burning, the electronic entropy
ranges from 0.5 to 0.9 in the Fe core and is about 1.3 in the convective
shell.
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The Fe core plus Si shell is also stable because

                MCh≈   1.15 M⊙ 1+ 1.0
π (0.47)

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟ = 1.67 M⊙ > 1.3M⊙

0.45 and 0.47 are average values of Ye in the region being 
discussed. For 0.45 we used the smaller value for MCh0 a few 
pages back.  For 0.47 we used the value for 56Fe. These are all
crude averages to make a point.





But when Si burning in this shell is complete:

Neutrino losses farther reduce se. So too do 
photodisintegration* and electron capture
and the boundry pressure of the overlying silicon 
shell is not entirely negligible.

The core collapses

3) The Fe core is now ~1.35 M⊙.

se central = 0.4

               se at edge of Fe core  = 1.1

               average ≈0.7
               Ye  ranges from 0.438 (center) to 0.47 (edge). 

                    use an averge of 0.45
MCh  now about 1.34 M⊙ (uncertain to at least a 

                                                      few times 0.01 M

• Photodisintegration raises the ionic entropy because 
one nucleus becomes 14. The collapse is 
approximately adiabatic so total entropy is constant.
Thus se = stot - sion must decrease



Electron



Appendix 1:   The solution of
reaction networks.



Consider the reaction pair:
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In the usual case that the two species were not in equlibrium
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,  a large time step, Δt →∞, would lead to a 

divergent value for the change in Y, including negative values.

For large ∆t, the 
answer could oscillate.



On the other hand, forward or "implicit" differencing would give
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Add equations ⇒ δY1= −δY2; substituting, one also has :
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(if 1/Δt >> λ, same as the explicit solution)

Even if  Δt →∞ the change in Y is finite and tends to
the equilibrium value Y1λ1=Y2λ2

In general an 
n x n matrix

n = 2 here



Appendix 2: Energy generation 
during silicon burning



This is very like neon burning except that 7 alpha-particles
are involved instead of one.



Reaction rates governing the rate at which silicon burns:

Generally speaking, the most critical reactions will be those connecting equilibrated
nuclei with A > 24 (magnesium) with alpha-particles.  The answer depends on
temperature and neutron excess:

Most frequently, for  η small, the critical slow link is  24Mg(γ,α)20Ne

The reaction 20Ne(γ,α)16O has been in equilibrium with 16O(α,γ)20Ne ever 
since neon burning.  At high temperatures and low Si-mass fractions,
20Ne(α,γ)24Mg equilibrates with 24Mg(γ,α)20Ne and 16O(γ,α)12C becomes
the critical link.

However for the values of η actually appropriate to silicon burning in
a massive stellar core, the critical rate is 26Mg(p,α)23Na(p,α)20Ne



To get 24Mg

To get a









3. Appendix on Entropy
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S = k log W
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for ideal gas plus radiation

dividing by k makes 
s dimensionless

As discussed previously
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Cox and Guili
(24.76b)

expression
Cox and Guili
Principles of Stellar Structure
Second edition
A. Weiss et al
Cambridge Scientific Publishers

Reif
Fundamentals of Statistical
and Thermal Physics
McGraw Hill



   

η=
µ

kT

 where µ,  the chemical potential is defined by
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For a non-relativistic, non-degenerate electron gas,

Clayton 2-63 and 2-57 imply (for η<< 0)
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which gives the ideal gas limit for electron entropy

(similar to ions but has Y
e
 and m

e
)



   

For η>>1 (great degeneracy)
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and negligible radiation
pressure (entropy)






