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Reaction rate per cm® per sec = nvn, o,

The reaction rate for the two reactants, / and j
asine.g., | (k)L is:
nn;o, ;v

which has units “reactions cm=3 s1”

It is often more convenient to write abundances

. . For example, a term in the rate equation
in terms of the mole fractions,

X, for “C(p,y)"N during the CNO cycle might look like
Y :A_I = PN, Y (ﬂ](moms)[MLlej
so that the rate becomes em’ )\ Mole )\ gm 12
ay(-<C
(PN, V'Y, Y, 0,,v # =-pY(*C)Y, NA<6py(1zC)v> ...

and a termin a rate equation decribing the destruction of Imight be

Equivalent to
dy, 1
— == PYYN, (o),v) +... dn,
; =—nn; <O']iv> + ...

Here { ) denotes a suitable average over energies and angles
and the reactants are usually assumed to be in thermal equilibrium.

The thermalization time is short compared with the nuclear timescale.



For a Maxwell-Boltzmann distribution of reactant energies

flv)= ( m )34m'2“"’"¥';'
~V\zmr = T

The average, over angles and speed, of the cross section times velocity is
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for the reaction I (j, k) L 2
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For Tin 10° K =1 GK, s in barns (1 barn = 10-?* cm?), Eg in
MeV, and k = 1/11.6045 MeV/GK, the thermally averaged
rate factor in cm® s is:

=

1 1 -14 ) /
<ijv> = w."ajk(Eé)EGe 11.6045 E(/ T, dE6
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A= 4 for the reaction I(j,k)L
A+ A

Center of mass system — that coordinate system in which the
total momenta of the reactants is zero.

The energy implied by the motion of the center of mass
is not available to cause reactions.

Replace mass by the "reduced mass"

M]M2
#:4
M, +M,

Read Clayton — Chapter 4.1

Ideally one would just measure the cross section
as a function of energy, put o(E) in the integral,
integrate numerically, tabullate the result as a
function of temperature and proceed. There are
several reasons why this doesn’t usually work

® The energies of importance in stars, which can wait a long
time for a reaction to occur, are generally so low that the
cross section is too small to measure directly.

® The targets are of sometimes radioactive and can’t be made
or handled in the laboratory

® There are too many reactions of interest
Consequently one must use a combination of measurement,
extrapolation, and theory to get useful answers

The actual form of ¢ may be very complicated and depends upon the
presence or absence of resonances however, it is of the form ...



Area subtended by a
de Broglie wavelength

. How much the nucleus I+j looks
in the ¢/m system.

| s

_ 1 Characteristic quantum h,k(f the tqrgct nucleus I “,th
= — mechanical dimension sitting at its surface. Liklihood
k of the system of staying inside R once you get
e there.
_ 2
o(E)=71k* pP(E) X(E)
geometry  penetration nuclear
term factor structure

(Cla 4-180)

probability a flux of

particles with energy E

at infinity will reach the
nuclear surface. Must account
for charges and QM reflection.

see Clayton Chapter 4

Here % is the de Broglie wavelenth in the ¢/m system
, mh* mh* 0.656barns
T 2uE A EMeV)
and 1 barn = 10**cm? is large for a nuclear cross section.
Note that generally EMeV) < 1 and & > R but

nucleus

much smaller than the interparticle spacing.

m,m, | L
U= KE=Zuvi, Vv,,=Vv,-V,
m,+m, 2
~AA . .
A= ~ 1 for neutrons and protons if A, is large
A+A

1 2
~ 4 for ac-particles if A, is large

12 13, A— (12)(1) — 12
og. "ClyyN A= (12+1) 13

For discussion of center of mass energy see

https://www.youtube.com/watch?v=lhwxK49d28Q
https://www.youtube.com/watch?v=mjrQHIJj lil

The barrier penetration term and an overall
quantum mechanical dimension don’t depend on
what happens inside the nucleus

nk’ ph(E)

all the uncertain physics that goes on inside the
nucleus once the reactants have penetrated within
the (well-defined) boundary of the nucleus is in

X(E)

X can be slowly varying with energy — as in
“non-resonant” reactions — or rapidly varying —
as in resonant reactions.

Barrier Penetration
See Clayton Chapter 4.5 and
Appendix 1 to this lecture for derivation

pF, gives the probability of barrier penetration to the nuclear radius R with
angular momentum /. Sometimes the p is absorbed ino the definition of P,.
Here it is not. Under stellar conditions for charged particles

it is usually very small,

pP = % where F, is the regular Coulomb function
£ (m.p) +G;(n,p)
e.g., llliadis 2.162 and G, is the irregular Coulomb function

See Abramowitcz and Stegun, Handbook of Mathematical Functions, p. 537

These are functions of the dimensionless variables

77 é = ;
_ Ih £ 2015752, zNArE contains all the charge dependence
v

contains all the radius dependence

2UE ~
p= Pe R=02187VAER,,
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Physical meaning of 1= Ih; nb., both nand p are dimensionless.

The classical turning radius, 7, is given by

1, ZZe
=
oM

T

The de Broglie wavelength on the other hand is

2Z,Z.¢
K=E:L r, = ! zje :nﬁzznx
p W uv v
Hence n:;—;l i.e., half the turning radius measured

in units of the DeBroglie wavelength

The probability of finding the particle inside of its classical turning
radius decreases exponentially with this ratio.

Zé

For low interaction energy, (21>>p, i.e., E << ! Rj )

YA

and Z,#0, pF, has the interesting limit _ Ir,g =0.15752,2 4/ E
Y /

2UE -
p=\ R=O2I8TVAER,

20(1+1)
PE=+2np exp| —27n+4+2np — ‘| Abramowitz and Stegun,
V2np

14.6.7

where
. 1/2
2np =02625(2,2,4R,,)
is independent of energy and angular momentum but depends on nuclear size.
Note:
rapid decrease with smaller energy and increasing charge(n T)

rapid decrease with increasing angular momentum

The leading order term for any constant ¢ is proportional to

pE o< exp(—Zm])

On the other hand,

b
. Z‘UE _R _p_/lv_ l 5
p=\t R=5 2(0)( 0

is just the size of the nucleus measured in de Broglie

wavelengths.

This enters in, even when the angular momentum and
charges are zero, because an abrupt change in potential
at the nuclear surface leads to reflection of the wave

function.

There exist other interesting limits for pP,

for example when 7 is small - as for neutrons where it is 0

12 _
pe<E pE=p
p3
p b= —pe p <<1 for cases of interest
+
P _ for neutron capture
k]
pR=—P—
T 943p7+p
This implies that for / = 0 neutrons ,
the cross section will go as 1/v. _ZZe
hv
2UE =
E"? p=y|"5= R=02187VAER,,
ie., TR pP o E < E7'? i’

For low energy neutron induced reactions, the
cross section times velocity, i.e., the reaction rate

term, is approximately a constant w/r temperature



S-factor (MeV-b)

For particles with charge, providing X(E) does not vary rapidly.

with energy (exception to come), i.e., the nucleus is "structureless"

—27n

O(E) = ik’ pP X(E) <

This motivates the definition of an "S-factor"

S(E)=0(E)Eexp(27mn)

n=0.15752,Z N A/ E
o

A4,+4,

This S-factor should vary slowly with energy. The first order

effects of the Coulomb barrier and Compton wavelength have been

factored out. This is what was plotted in the figure several slides

;1:

back. Its residual variation reflects nuclear structure and to a lesser

extent corrections to the low energy approximation.

Cross section with the DeBroglie and
barrier penetration part divided out.
Proportional to X(E).
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For those reactions in which S(E) is a slowly varying function of energy
in the range of interest and can be approximated by its value at the energy
where the integrand is a maximum, E,,,

S(E)

o) ==

exp(=27n)

172 32 I
8 1
NA<0'v>~NA(Ej (E) S(E,) (J;exp(—E/kT—Zm‘](E))dE

where 1(E) =0.1575A/ E(MeV) zz,

The quantity in the integral looks like

MAXWELL - BOLTZMANN
DISTRBUTION
« exp HEIRT)-E

RELATIVE PROBABILITY

where E | is the Gamow Energy, where the Gaussian has its peak

2/3 ~
Eo=(mE"kT) " nE" ~0.1575VA 2,2 kT= Ty

A 1/3
E, =0122 (Z}Z}AT}) MeV

and A is its full width at 1/e times the maximum

A= (ExT)"? =0237 (ZIZZJZ.AT;)% MeV

V3

A is approximately the harmonic mean of kT and E,,

and it is always less than E,,

11.6045

For accurate calculations we would just enter the
energy variation of S(E) and do the integral numerically.
However, Clayton shows (p. 301 - 306) that

exp(;—f - 271'77) can be replaced to good accuracy by

—(E-E,) i
C exp| ——~— |, i.e. a Gaussian with the same maximum and
(Ar2)

second derivative at maximum

GAMOW PEAK
psp —
T‘ =15 4

T

A s |

RELATIVE PROBABILITY

g,
T e h e
s 0
INTERACTION ENERG( E (keV)

Froune 4.7, Curves for the Gamow peak for the p -~ p reaction at T, = 15, as obtained from the
€xa¢t expression and from the approximation using the Gausssan function
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e.g. *He(o,y)Be at1.5x10” K

0.55

E, =0.122 (Z2Z?ATZ)" Mev 0sof

S, (E) (keV b)

. (3)(4) 0.45
A= =1.714; T,=0.015; Z,=2,=2 !
3+4 ! 0.40
2,12 2\"? r
E, =0.122 ((2)"(2)"(179)(0015)")  Mev 03|
= 002238 MeV = 22.4 keV 00| :
Similarly 00 02 04 06 08 1.0 12
A=0.237 (Z2Z?AT;)" =0.0124 MeV = 12.4 keV E Mev)



In that case, the integral of a Gaussian is analytic*

where S(E ) is measured in MeV barns. If we define

A= NA<O'jkv>

Clayton 4-54 and 56

434 108 uses S inkeV b

454X 2 1 3 and leaves out N

NA <GV> - 4 7 S(EO) T cm’/ (M01e S) otherwise the same
14 answer.

je’*z dx = V1

then a term in the rate equation for species I such as Y;pA4,, has units

Mole \( gm em® )
gm )\cm’ )\ Mole s
Note that 7 here is Na.
AN1/3
E 7?77 A
T= 3E =40248| L1
kT )

*See Appexdix 2 for integral

Adelberger et al, RMP, (2011)
The standard solar values

Different people use different
conventions for A which sometimes

do or do not include p or N,. This
defines mine. Clayton does not innclude

differs from Clayton which
measures Tin 106 K

TABLE I The Solar Fusion II recommended values for S(0), its derivatives, and related quantities, and for the resulting
uncertainties on S(E) in the region of the solar Gamow peak — the most probable reaction energy — defined for a temperature
of 1.55 x 107K characteristic of the Sun’s center. See the text for detailed discussions of the range of validity for each S(E).
Also see Sec. VIII for recommended values of CNO electron capture rates, Sec. XI.B for other CNO S-factors, and Sec. X for

the ®B neutrino spectral shape. Quoted uncertainties are 1o.

Reaction Section S(0) S'(0) S"(0) Gamow peak
(keV-b) (b) (b/keV) uncertainty (%)

p(p,etre)d 11 (4.01 £ 0.04)x107%2 (4.49 + 0.05)x10~2 - +0.7
d(p,y)*He v (2.1455 1) x107* (5.561055) %1076 (9.3539)x107° +71°
3He(*He,2p)*He \% (5.21 £ 0.27) x 10° —4.9 +3.2 (22 £1.7) x 1072 +4.3°
3He(*He,y)"Be VI 0.56 £ 0.03 (—3.6 + 0.2)x107* ¥ (0.151 4 0.008)x1076 ° +5.1
3He(p,etve) He VII (8.6 + 2.6)x1072° - - + 30
"Be(e™,ve)Li VIII See Eq. (40) - - +20
p(pe~,ve)d VIII See Eq. (46) - - +1.01
"Be(p,)*B X (2.08 £ 0.16)x107% © (=3.1 £ 0.3)x107° (2.3 £0.8)x107" +75
“N(p,)"°0O XILA 1.66 + 0.12 (=3.34+02)x107% " (4.4 +0.3)x107° ¢ +7.2

Adelberger (2006) gives corrections (from Bahcall 1966)

for derivatives of S. His eq 4

_ -1
Sy =S(E)|1+7 E+

5

58'E,
— 04

28

"2
S"E?

+...

E=E,

If derivatives are known use Sy instead of S(Ey) in the

integral.

Adelberger et al, RMP, (2011)
The standard solar values

TABLE XII Summary of updates to S-values and derivatives for CNO reactions.

Reaction Cycle S(0) S'(0) S”(0) References
keV b b keV~' b
20(p,7)*N 1 1.344+0.21 2.6x107° 8.3x107°  Recommended: Solar Fusion I
1BC(p,7)"N I 7.6 + 1.0 -7.83x1073 7.29x10™*  Recommended: Solar Fusion I
70+£15 NACRE: Angulo et al. (1999)
“N(p,7)"°0 I 1.66 +0.12 -3.3x107° 4.4x107°>  Recommended: this paper
lr’N(]’), m.)”C 1 (7.3+£0.5)x 10* 351 11 Recommended: this paper
N(p,~)'°0 11 36+6 Mukhamedzhanov et al. (2008)
64£6 Rolfs and Rodney (1974)
2984 5.4 Hebbard (1960)
50(p, )''F 11 10.6 £0.8 -0.054 Recommended: this paper
70(p, a) "N 11 Resonances Chafa et al. (2007)
"0(p,7)"*F 11 6.2+3.1 1.6x107° -3.4x10~7  Chafa et al. (2007)
80(p, a)'*N 111 Resonances See text
80(p,7)"°F v 15.7 4+ 2.1 3.4x107* -2.4x107®  Recommended: Solar Fusion I




Temperature dependence of reaction rates (constant S(E))
A dt A T

=1’e”" T=— == =
4 " dT 3rY? 3T

£=2te’f ar _ e’ dr
dT dT dT

T(df\_ T  NEILEVE Sy
_[_J_Tze-f Gre D) = g (e )5

f\dr
[(dinf) t-2
dinT 3

s fee TN n=

This is all predicated upon S(E, ) being constant, or at
least slowly varying within the “Gamow window”

E,+A/2

This is true in many interesting cases, especially

for light nuclei (no resonances or a single broad
resonance) and very heavy ones (very many
resonances in the window so that average properties
apply). Butitis not always true.

For example, °C + ?C at8x 108 K

S(E) ~ const

S(E) ~ const

S(E) highly

variable

S(E)~ const

173
2 .2 1212
r=4208| 20 e
0.8

=90.66

n= 90'636_ 2295

p+p atl.5x 107K

1/3

1-1

7=4248) —1t1
0.015
=13.67
Lo1367-2

® Truly non-resonant reactions (direct capture and
the like)

¢ Reactions that proceed through the tails of broad
distant resonances

® Reactions that proceed through one or a few
“ ” 1 “ . 29
narrow resonances within the “Gamow window

® Reactions that have a very large number of
resonances in the “Gamow window”



Reaction Mechanisms

1) Direct Capture - an analogue of atomic radiative capture Direct capture provides a mechanism for reaction in
the absence of resonances. Usually DC cross sections are
The target nucleus and incident nucleon (or nucleus) react much smaller than resonant cross sections on similar

without a sharing of energy among all the nucleons. An example

be the direct radiative capture of a neutron or proton and

the immediate ejection of one or more photons. The ejected photons
are strongly peaked along the trajectory of the incident projectile.
The reaction time is very short, ~ R/c ~10-2" s,

nuclei - if a resonance is present.

This sort of mechanism dominates when there are no strong
resonances in or near the Gamow window. It is especially important E P
at low energies in light nuclei where there are few resonances

The S-factor for direct capture is smooth and featureless.

Examples:

*He(at,y)'Be, *H(p,y)’He, *He(*He, 2p)‘He B
IZC(n,,}/)Bc, 48Ca(n,,}/)49ca

. For the reaction I(j,y)L
2) Resonant Reaction:

A two step reaction in which a relatively long-lived

excited state of the “compound nucleus” is formed Excited
— the “resonance”. This state decays statistically without State of L T width T
any memory (other than energy and quantum numbers) TE SRR

of how it was produced. The outgoing particles are not

peaked along the trajectory of the incident particle. . h

(This is called the “Bohr hypothesis” or the “hypothesis I+ t=lifetime of state = T

of nuclear amnesia”). The presence of a resonance says

that the internal structure of the nucleus is important and

that a “long-lived”state is being formed.
Step 1: Compound nucleus formation Step 2: Compound nucleus decay L

(e unpound Siafe) E is the energy of | +j in the center of mass frame
— and the state is characterized by a width T (in energy

E_L ir e i units) given b_y its I|f_et|me against all the ways it can decay,

Sa 2o photon emission being one of them. The excited state

has a certain spin and parity and, depending on the values
might serve as a resonance for the reaction. Some reactions
s R B proceed directly to the ground state.




Resonances may be broad or narrow. The width is given
by the (inverse of the ) lifetime of the state and the
uncertainty principle.

AE At ~ 1

Generally states that can decay by emitting a neutron
or proton will be broad (if the proton has energy greater
than the Coulomb barrier. Resonances will be narrow
if they can only decay by emitting a photon or if the
charged particle has energy << the Coulomb barrier..

r:ri r,=>T,  h=6582x107MeVsec

For this case the S factor is slowly varying in the Gamow “window”.
Say hydrogen burning at 2 x 107 K, or Ty = 0.020

12 C(p ,}/)13N

Gamow
1241

1/3
E._ =0.122 (62 12 ﬂo.of] = 0.0289 MeV = 28.9 keV

1/6
A=0237 (62 pLt o.ozsj ~0.0163 MeV = 16.3 keV
12+1

Note there is no data at energies this low.

As is generally the case, one must extrapolate the experimental
date to lower energies than are experimentally accessible. The
S-factor is useful for this.

E.g., a broad resonance

% ] .
F 1
Cip.y) N ]
. - L W r
e e gl "L SV
1 9

v : i ,‘.J

I

. A ' A

\ X o (24
PROTON ENERCY E_, (keV)

3 2.366 Excitation energy
E(422) =457 - 1.944 Q value for (py)
0.422 MeV  Threshold ¢/m

The energy scale is given in the center of mass
fram (422 keV) needs to be converted to the lab

frame to compare with lab data. Multiply by
(ArtA)(AL1A,)

Consider, however, the reaction **Mg(p,y)” Al

This reaction might be of interest either in hot hydrogen burning
at 30 million K or in carbon burning at 800 million K. Consider the
latter.

Gamow
24 +1

1/3
E._ =0.122 [122 12£0.82j — 0.543 MeV

1/6
A =0237 [122 P2l 0.85) ~0.447 MeV
25+1

That is energies up to 1 MeV are important
Now three resonances and direct capture contribute.



Another Example:

RESONANT PLUS
DIRECT CAPTURE 523

. G

102
I/z’ %0
1o
i
8 100
5
&
g [onl
g L
2 10° X
g
2 ///
10° J /
/
/
I

512'

I
24Mg (p.y) 2%
8, - 45°

B
—

2488
b ] s

FERTTTT MW ETITT SR TTIT BT

1

|
G2 04 06 08

P
1.0

e 1 o 4 s 1 L M
12 14 16 L8 20 22

PROTON ENERGY Epfiob) [Mev]

Resonance contributions are on top of direct capture cross sections

The cross section contribution due to a single resonance is given by the

Breit-Wigner formula:

r.r
2 1= 2
o(E)=rnk ; .
% | (E-E) +(T'/2)
\
Z |
Usual geometric factor oc Fl Partial width for decay of resonance
_0.656 1 b by emission of particle 1
-3 E am = Rate for formation of Compund
nucleus state
. . Partial width for decay of resonance
S IEEEE <D by emission of particle 2
27 +1 = Rate for decay of Compund nucleus
Z into the right exit channel

=
(2J, +1)(2J, +1)

See appendix 3 and Clayton
for derivation.

T" = Total width is in the denominator as
a large total width reduces the maximum
probabilities (on resonance) for

... and the corresponding S-factor

Note varying widths and

effects forE >>T"!

3 xz}uv% T I T I T T I T T LSELEEURNL B [ B o6 B )
E™ e 75mev AN F
3 24 25 x> 1
o Mg (p.y) = Al §
2 M L 4 1
;_ .‘:;"v g 1ot
I P e 7S mav 1
Not constant S-factor ~F £ f
; 3
for resonances \"’r 2 | 3
(log scale 111) —— u
F =
- <
08 r é o' 1
-
E ® 1201 keV Y’E
¢ | - DAL sl o 3
E I %‘.r.un«i
r it
04 e 1623 kev. b
F DIRECT E
- CAPTURE -
~ constant S-factor . F E
i 0% 3
for direct capture [ . " :
[
E
i TR Y T M 1 1 | ]
0.2 0.4 06 0. 1.0 12 1.4 1.6

PROTON ENERGY Ep(iob) [Mev]

One can perform the Maxwell Boltzman integral analytically (Clayton 4-193):

For the contribution of a single narrow resonance to the stellar reaction rate:

~11.605 E_ [MeV]

N, <ov>=154-10"(AT,)** wy[MeV]e  °

cm’®

s mole

The rate is entirely determined by the “resonance strength” @Y

27,41 IT,
o Q2J,+1)2J,+1) T

Which in turn depends mainly on the total and partial widths of the resonance at

resonance energies.

decay into specific channels.

Flrz z1—*

1

often I'=T", +I", Thenfor I <<I,——>T'=T,—>
FIFZ

I'<<I'N—TI'=T|,— =T,

And reaction rate is determined by the smaller one of the widths !




2=action El2b (kev)
N(p, rJO 278
O(p,7)"*F 151
Na(p,x)*Ne 338
Na(p,7)*Mg 512
Mg(p,7)*Al 223
419

Ma(p, ) Al 435
591

Ma(p. )7 Al 338
454

1966

Al(p,v)"Si 406
632

992

Si(p,y)*'P 620
P(p,7)¥S 642
811

S(p,7)*Cl 1211
Cl{p,y)*Ar 860
Ar(p, 1)K 918
Cl(p,7)*Ar 846
K(p.7)“Ca 2042
Ca(p,7)""Sc 1842

Illiadis Table 4.12

1/2
1/2*

1

(1,27)

1/2
3/2°

4

1
32
1/2
5/2*

i

3

o4
12

1

2
7/2

3

WYem (BV)
1.37(7) x 104
9.7(5) x 104

7.16(29) x 102

9.13(125) x 1072

1.27(9) x 10~2

4.16(26) % 10
9.42(65) x 102
2.28(17) x 10!
2.73(16) x 101
7.15(41) x 107!
5.15(45)

8.63(52) x 1073
2.64(16) x 10~!
1.91(11
1.95(10)
5.75(50) x 102
2.50(20) x 10!
4.50(50)
7.00(100) x 101
2.38(19) x 10!
1.25(16) x 10!
1.79(19

1.40(15) x 10!

Savele Enemu  Disgranm

g

(Fig. 24.3; table 24.9)
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Fig. 240, Esergy levels of Mg

Error (%) Reference

5.1 h

5.2
4.0

13.7
71
6.2
6.9
7.4
5.9
5.7
8.7
6.0

6.1
57
5.1

8.7

8.0
1.1
14.3

8.0
12.8
10.6
10.7
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As one goes up in
excitation energy many
more states and many
more reactions become
accessible.

As one goes to heavier nuclei and/or to higher excitation
energy in the nucleus, the number of excited states, and hence
the number of potential resonances increases exponentially.

Why? The thermal energy of a non-relativistic, nearly degenerate
gas (i.e., the nucleus) has a leading term that goes as T? where
T is the “nuclear temperature. The energy, E, of a degenerate gas
from an expansion of Fermi integrals 1is:
here p is the

density and Q is
the partition function

E=f(p) + akT)’ + b kD" + ....

One definition of temperature is
1 9§

1 dnQ
kT oE Tza_E S=kInQ defines T

where € is the number of states (i.e., the partition function)
dlnQ JdInQ JoF
oT oE oT

Note that T here is not the
stellar temperature but a ficticous

dInQ ~ (a—E) dT ~ i(zasz ) dT
kT temperature for the nucleons in

KT \ oT
the nucleus. The ground state has
InQ ~ 2ak [dT =2akT + const T=0

Q ~ C exp(2akT)
and if we identify the excitation energy, E, = a(kT)’|
i.e., the first order thermal correction to the internal energy, then

EX The number of excited states
(resonances) per unit excitation
energy increases exponentially
with the square root of the

Q=Cexp (2 aEx)
excitation energy.
Empirically a = A/9. There are corrections to a for shell
and pairing effects. In one model (back-shifted Fermi gas)
0.482

T AS6R32
AY°E?

(kT): ~




What is the cross section when the density of resonances is large?
Take N (>>1) equally spaced identical resonances in an energy interval AE.
For example, assume they all have the same partial widths.

| I\ | \__J | Generate an energy averaged cross section

F_D_4 E+AE
E)dE
AE (o) { o(£) 1Y ol T dE
AE AE | S (E-¢)+T,/4
rr, =
D << AE Sy dE
AE 4 (E-g)+T/4
jooe o N_1L
o(E—g)+T2/4 T AE D
rr TT

T

tot

<0'> = 2ﬂ27&2wﬁ:ﬂ7&2w Lk

I
where T, :27r<—’>
/ D

Level Density at S,

1

T

T — .- T
-

80 | |

T. Rauscher 1996
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This gives the Hauser-Feshbach formula for estimating
cross sections where the density of resonances is high.

T(J".E)T}(J".E)
T, (J".E)

V75
— - Y(2J, +1
(2],+1)(2Jj+1)§‘( 1)

JE

0,(E)=

Expressions for the transmission functions for n, p, @, and y

are given in Woosley et al, ADNDT, 22, 378, (1978). See also

the appendix here. A transmission function is like an average
strength function for the reaction over the energy range of interest.
It includes the penetration function. It is dimensionless and

less than 1. See appendix 4 for derivation and details.

This formula has been used to generate thousands of cross sections
for nuclei with A greater than about 24. The general requirement
is many ( > 10) resonances in the Gamow window.
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l<4-H-H

More levels to make
transitions to at higher
Q and also, more
phase space for the
outgoing photon.

Qi

3 Lo
E, for electric dipole

T(Q,)>T(Q))

and as a result

T, T,
o, =< =T,
T +T,

is larger if Q is larger

Summary of reaction mechanisms
1G,k)L

€ . -
----.,}f.—k/«; G pomen Gnecyy w\-\lhl ¥

|

1 Gompete g »o.w2 (i, l; f T,x ) h Met

4% 0.2%7 (2: 3.; ?w,’)*c MeV

The Q-value for capture on nuclei that are tightly
bound (e.g., even-even nuclei, closed shell nuclei)
is smaller than for nuclei that are less tightly bound
(e.g., odd A nuclei, odd-odd nuclei).

As a result, nuclear stability translates into smaller
cross sections for destruction - most obviously for
nuclei made by neutron capture, but also to some
extent for charged particle capture as well.

This is perhaps the chief reason that tightly bound
even mass nuclei above the iron group are more abundant
in nature than their less tightly bound odd mass neighbors.

Summary of reaction mechanisms
1G,k)L

® Add the Gamow energy E, to Q-value and look
inside nucleus |+

® Any resonances nearby or in window

™~

No Yes
Right spin and parity?
No Yes

! \
Tail of A few Many

Broad  Narrow Overlapping
Direct Extrapolate  Breit- Hauser-
Capture S-factor Wigner Feshbach



Special Complications in Astrophysics

® Low energy = small cross section — experiments are hard.

® Very many nuclei to deal with (our networks often include
1600 nuclei; more if one includes the r-process)

® The targets are often radioactive and short lived so that
the cross sections cannot be measured in the laboratory

(5®Ni, #4Ti, 26Al, etc)

® Sometimes even the basic nuclear properties are not know
- binding energy, lifetime. E.g., the r-process and the rp-
process which transpire near the neutron and proton-

drip lines respectively.

® Unknown resonances in many situations
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® Target in excited state effects — in the laboratory the
target is always in its ground state. In a star, it may not be

€y
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® Electron screening

Nuclei are always completely ionized — or almost
completely ionized at temperature in stars where
nuclear fusion occurs. But the density may be
sufficiently high that two fusing nuclei do not
experience each others full Coulomb repulsion.

This is particularly significant in Type Ia supernova
ignition.



Roughly the ion sphere is the volume over
which a given ion can "polarize" the surrounding

Electron screening is generally treated in two limiting electron cloud when that cloud has a thermal
Cascs. energy ~kT. lts size is given by equating thermal
kinetic energy to electrical potential energy.
Weak screening: (Salpeter 1954) The charge within such a cloud is (Volume)(n, e)
and the charge on each ion is Ze. The volume is 4/3 7rRiJ
The electrical potential of the ion is adjusted to andn_ =Zn,. So
reflect the presence of induced polarization in the background 4 .
.. . ; R (ane )(Ze) In general must include
electrons. The characteristic length scale for this screening pE-\3 b T more than one kind of
is the Debye length R, ions and the interaction
12 among electrons and
2 among ions, not only
_ ( kT j C _ Z (22 +Z)Y R, ~ I kT Compare with Clayton 2-235 between ions and electrons,
4re pNAg e sy These “Coulomb correction”
Clayton 2-238 and discussion before Differs by v/3 affect the pressure and energy
of a gas, not just reaction rates
PNY, = n,

This is the typical length scale for the clustering of charge
in the plasma. Weak screening holds if R, >>n, 13

. The leading order term in the screening correction
e.g., the screening ; . .
forptpatthe  (after considering Mawell Boltzmann average) is

solar centeris  then (Clayton 4-221; see also Illiadis 3.143)
about 5% - Illiadis

The modified Coulomb potential is then

2

e’z P 210 U
V—T exp(—r/Ry) U,<<kT |f = 1—k7(1= 1+0.188Z,Z, pl/Zgl/z T6_3/2
Clayton eq. 4-215 and discussion leading up to it Strong screening: Salpeter (1954); Salpeter and
shows that, in the limit that R, >> the inter-ion van Horn (1969)

separation, then the effect of screening is an overall

. . If Rpb less than the inter-i ing,
reduction of the Coulomb potential by an energy p beécomes Iess than the mter-1on spacing

then the screening is no longer weak. Each ion of
7 7 o charge Z is individually screened by Z electrons.
=17 The radius of the “ion sphere” is

o RD
3 1/3 4 3
This potential does not vary greatly over the region where R,= ( Z j ie. R, n==2
the rate integrand is large (Gamow energy) 4rn, 3



Clayton 2-262, following Salpeter (1954)

shows that the total potential energy of the ion sphere,
including both the repulsive interaction of the electrons
among themselves and the attractive interaction with

the ions, is

9 (Ze)2 113
=_E R =—17.6 ZSB(pYe) eV << Gamow energy E,
V4

and the’correction factor to the rate is exp(-U / kT')>> 1‘ with

~U,=176 ( pYe)”[(z, +2,)" -z - zﬂ eV (Cla4-225)

More accurate treatments are available, but this can
clearly become very large at high density. See Itoh et al.
ApJ, 586, 1436, 2003

Suppose X(E) is slowly varying

Consider just the barrier penetration part (R <r < infinity)

where R is the nuclear radius (where the strong interaction dominates).
Clayton p. 319ff shows that Schroedinger's

equation for two interacting particles in a radial

potential is given by (Cla 4-122) [see also our Lec 4]

v 0.0)- 20y 0.9) .
r potential
where (1) satisfies
2
nd> I+ DR’ V== r>K
[;—FJF%W@)—E} £,(r)=0 "
podr 2 V=", r<R
(Clayton 4-103) Like the one-electron

atom except forr <R

for interacting particles with both charge and angular

momentum. The angular momentum term represents the

known eigenvalues of the operator L2 in a spherical potential
*The 1/r cancels the r? when integrating ¥"¥ over
solid angles (e.g. Clayton 4-114). It is not part of

the potential dependent barrier penetration calculation.

Appendix 1:

Solution of Schrodingers
Equation for Two Charged
Particles with Angular Momentum

Classically, centrifugal force goes like
mv:  m’v’R? L
Fc = = 3 3
R mR mR-

One can associate a centrifugal potential with this,
—12
2mR’
Expressing things in the center of mass system and

[FaR =

taking the usual QM eigenvaluens for the operator L
one has
—l(l+D) K
2UR’®



To solve, do some variable substitutions

Hdd I+ DR
2Ly v -E =0
[Zu VO [0

divide by E and substitute for V(r) forr» >R

W4 KD ZZeE
2UE dr*  2ur’E rkE

1| () =0

Change of radius variable. Substitute for r

pzﬂfzszEr dp—)stzE dr dzp—>2:2E d’r

and for Coulomb interaction chain rule

77 62 htps://en.wikipedia.org/wiki/Change_of_variables#Differentiation
2 2E
n =_- J y= |—

hv u

p and n are dimensionless

to obtain
) [([ 1) 5 numbers
—d + n
+ +— -1 =0
|: de p2 p :| xl(p)
Appendix 2 - _E YV
pp X exp[%—Zm)] =~e ’exp[ A/i"]
8 12 3/2 71“,“ EO 2
ol ] o {551

8 12 1 312 - . E-E, 2

. —2E
Can replace lower bound to intergral E = b

by E = - « with little loss of accuracy (footnote
Clayton p 305) so that

12 3/2
(B AT ,
A= NA(EJ [EJ e ES(EO)_[ exp[—x ]dx

NA[SJ [1) e ASENT

) \kT 2

112 3/2
2\ 1
N,| — — A S(E
A(u] (kTJ oA SE)

A 4
(KTY?) ~ 93annE™

multiply by -1

d’ 2n I(1+1
_)g +(1——n—(—z))l =0
dp P
This is the solution for

. . R<r <o
has soJutions (Abromowitz and Stegun 14.1.1
http://pgople.math.sﬂl.caicgm/aands/)

x= CFmp)+C,GMmp) C=1 C=i

where F and G, the regular and irregular Coulomb functions
are the solutions of the differential equation and the constants
come from applying the boundary conditions

The barrier penetration function P, is then given by

2
P _Fp==)tGl(p=e) _ 1
" FE@p)+Gimp)  F0.p)+G(.p)

Cla 4-115

For the one electron atom with
The “1” in the numerator corresponds t0 8, pogential 2, one obtains the
. . . r
purely outgoing wave at infinity from a
decaying state.

2

same solution but the radial component

is Laguerre polynomials.

i (2]1/2 4
N, 1) 0301575 2Z,\A)

1?6 "S(E,) MeV"?amu™"? barmn

_ 7.2x107"®
AZZ

=]

t?e" S(E,) cm®s™  (Clay 4-56)

4.34x10®
v)="4zz

I~j

A=N

A

S(E,) t%¢”" cm® / (Mole s)

nb. The unit conversion factor 107 *(6.02x10*° «1.602x107°)"?
=9.82x107" converts MeV"?amu "*barn to cm®/s.
Also change 1 to A amu



Appendix 3: How to calculate resonant cross section?

Decaying states in general have an an energy
distribution given by the Breit-Wigner or Cauchy
distribution (Clayton 3-103)*. The normalized probability
that the state has energy E is

If a reaction is dominated by narrow resonances, its
cross section will be given by the Breit-Wigner equation
(see page 347 Clayton, also probs. 3-7 and eq, 3-103).

rr 2J +1
I'/2r dE .52 ik _ -
P(E)dE = 3 2 o(E)=mk'o P =TT )
(E—g, ) +(T/2) (E-¢) +T2/4 (2J, ;
where
B The I'" s are the partial widths (like a probability but with
I'=— nb. units of energy dimensions of energy) for the resonance to break up into
T but rather like a rate various channels. These now contain the penetration factors.
and 7 is the lifetime The lifetime of a resonance is
h
T=—v r,=>T,  h=6582x10"MeVsec
* Solve wave function for a quasistationary state rtot
2
subject to the constraint that J|Wk| = exp(-t/7). Take This cross section will be sharply peaked around ¢&,, with a width 7,
Fourier transform of y(t) to get ¢(E) and normalize.
Bp ===== ==
— ]
. Appendix 4:
eq W'l pp :
Barrier Penetration

The T% v 10y he
measured or
k‘lffﬂb‘ﬂ“d*)) e lealated

and Transmission Functions




Reflection at a Potential Change

For simplicity consider the case where the incident particle has no
charge, i.e., a neutron, and take angular momentum, 1 = 0.

In QM there exists reflection

—Tt Energy whether V increases or
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, decreases
— E
reflected 0 Perfectly )
«— x<0 absorbing — E= b
E+V, what gets in 2u
stays in
2uE  p 2m 1 —k
v, V(x) h R A R
x>0
Wave number for incident particles k:% x<0
N2UW(E+T, 2uV
inside well = a ) B
h h
Though for simplicity we took the case
[ =0 and Z = 0 here, the result can be generalized
to reactants with charge and angular momentum
ForZ=0 pE=p =0
3
1+p°
5
=P o
S 94+3p +p

ForZ >0
P

—— =2
nzz’zi/(':()‘1575 zz, _4 F; (TI,P)JFG,Z(?LP)
hv E(MeV)

2UE - .
= |BE R —02187VAE R,(fin)

e

Y(x)=Ade™ +Be™  x<0 Incident wave plus reflected wave
=Ce™ x>0  Wave traveling to the right

¥(x),¥’(x)continuous implies at x=0, A+B=C

ikA—ikB =iKC
K
1-=
- Bk
A K
1+—
k
K K.,
> (1+2)? (=2
T=1— B _ (+ k) ( k) _ 4K |k _ 4Kk The fraction that “penetrates”
A K K 2 to the region with the new
2 » (k+K)
a+ ;) 1+ ;) potential.
andif £ <<V
4k AmkR 4
p=3k AR A0 _ s rop,
K rmKR nKR
recall pP,=p=#kR
where S = is the "black nucleus strength function"

b2
f corrects empiricaly for the fact that the nucleus is

not purely absorptive at radius R

It is customary to define the transmission function for particles
(not photons) as
T=4nS f(pP)

where S, the strength function, could be thought of in terms
of resonance properies as
= L =ﬁ0—’2 (see 3 pages ahead)
D uR*D
which is a constant provided that BJ.Z o< D, the level spacing.

This is consistent with the definition

el

Here “f” is the “reflection factor”, empirically 2.7 for n and p
and 4.8 for alpha-particles, which accounts for the fact that the
reflection is less when the potential does not have infinitely
sharp edges at R. Hence the transmission is increased.



But actually the strength function is parameterized in
terms of the black nucleus approximation used in the
transmission function calculation. Unknown parameters
are fit to data.

For nuclei A < 65

R=125A"+0.1 fm fornp
1.09 A3 +23 fm for alpha particles

1 2uv
S=—+— K=,—* V = 60MeV
n.KR hZ 0

This is what is used in the Hauser Feshbach formalism

Semi-empirical I'’s

Typically T, ~ eV — larger for large AE in the transition; smaller if
a large AJ is required or AE is small.

For nucleons and alpha particles it can be shown (Clayton 330 — 333)
that

3’ 125.41 MeV
U=| =5 |6 PR =75 ———0/pF,
HR AR"(fm)

where 47 is the “dimensionless reduced width” which must be
evaluated experimentally, but is between 0 and 1 (typically 0.1).

The resulting widths are obviously very energy sensitive (via pP))
but for neutrons and protons not too much less than the Coulomb
energy, they are typically keV to MeV.

Analogously the photon transmission function is defined as:

r .
T, =21 <Ey> = Strength function * phase space factor

Phase space ~E,’ for dipole radiation

5 L
E~ for quadrupole radiation

The strength function is usually taken to be a constant
or else given a *"Giant Dipole” (Lorentzian) form.

The transmission functions to the ground state and each excited
state are calculated separately and added together to get a total photon
transmission function.

The decay rate of the state is qualitatively given by (Clayton p 331) 4.

A=probability/sec for particle from decaying system to cross large
spherical shell
A=—= velocity at infinity * penetration factor * probability per unit dr
T

that the particle is at the nuclear

radius + dr
= E:V p] 292 :h_piply: 3h2 pP192
n R UR R UR
AnR* dr . o . .
where i= SRR ar dz is the probability per unit radius
R 4/3#nR d (volume)

for finding the nucleon if the density is constant

2 . .
0° =dimensionless constant < 1

2UE

R MV o
p=kR=E"R=[= =R

volume



Very approximate estimates for I

Typically T, ~ eV — larger for large AE in the transition; smaller if
a large AJ is required or AE is small.

For nucleons and alpha particles it can be shown (Clayton 330 — 333
and appendix to this lecture) that

J

3h2 125.41 uls;: this 01;1y in the
r= [ Rz J ,2 p [:7 = ASZ(JI\(/IG)V 9? PP, experimental zata
H R*(fm)

where 47 is the “dimensionless reduced width” which must be
evaluated experimentally, but is between 0 and 1 (typically 0.1).
See appendix to this lecture (last page)

The resulting widths are obviously very energy sensitive (via pP))
but for neutrons and protons not too much less than the Coulomb
energy, they are typically keV to MeV.

FIFZ
(E-E) + (T/2)

o =1k’

I I dE
o(E)dE = nk’w T (E)T,(E
! (E) 70 Ty (E,)T( r>£(E_Er)2+(Fr/2)z
N\ Y Y,
2n

r

r

Rate of reaction through a narrow resonance

Narrow means: I << AE
In this case, the resonance energy must be “near” the relevant energy range

AE to contribute to the stellar reaction rate.
pull out front

Recall: 8 1 % _E
<ov>= |— —mjc(E)Ee KT JE
mu (kKT

|

L'\ (E)L,(E)

d _ 52
" S = By + (T &)/ 2)

For a narrow resonance assume:

E
M.B. distribution ®(E)e Ee ¥ constant over resonance ®(E) = O(E))
All widths T'(E) constant over resonance  I',(E)=T,(E,)

R constant over resonance



