
Lecture 5

Basic Nuclear Physics – 3 

Nuclear Cross Sections
and Reaction Rates

  

Total area of target nuclei

per cm3 = nI σ I

 Reaction rate per cm3  per sec = n jv nI  σ I

j

I

Cross Sections

flux = njv

The reaction rate for the two reactants, I and j 
as in e.g., I (j,k) L  is:

nInjσ I j v
which has units �reactions cm-3 s-1�

It is often more convenient to write abundances
in terms of the mole fractions,

 

YI =
XI

AI

nI = ρNAYI

so that the rate becomes

(ρNA )2YI Yj σ I j v
and a term in a rate equation decribing the destruction of I might be

dYI
dt

=− ρYIYjNA σ I jv +....

Here    denotes a suitable average over energies and angles
and the reactants are usually assumed to be in thermal equilibrium.
The thermalization time is short compared with the nuclear timescale.

gm

cm
3

⎛
⎝⎜

⎞
⎠⎟
atoms

Mole

⎛
⎝⎜

⎞
⎠⎟

Mole

gm

⎛
⎝⎜

⎞
⎠⎟

Equivalent to

dnI

dt
= − nInj σ Ijv + ...

For example, a term in the rate equation
for 12C(p,γ )13N during the CNO cycle might look like

        dY(12C)
dt

=− ρY(12C)Yp NA σ pγ (12C)v +...



For a Maxwell-Boltzmann distribution of reactant energies 

The average, over angles and speed, of the cross section times velocity is
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where µ  is the "reduced mass"

             µ=
MIm j

MI+ m j

 for the reaction I (j, k) L
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Center of mass system – that coordinate system in which the 
total  momenta of the reactants is zero.

The energy implied by the motion of the center of mass
is not available to cause reactions.

Replace mass by the "reduced mass"

                  µ=
M1M2

M1 + M2

Read Clayton – Chapter 4.1

For T in 109 K = 1 GK, s in barns (1 barn = 10-24 cm2), E6 in 
MeV, and k = 1/11.6045 MeV/GK, the thermally averaged 
rate factor in cm3 s-1 is:

        σ jkv  = 
6.199 x 10-14

Â1/2T9
3/2

σ jk (E6 )E6 e
−11.6045E6 /T9 dE6
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             Â=
AIA j

AI +  A j

for the reaction I(j,k)L

Ideally one would just measure the cross section
as a function of energy, put σ(E) in the integral,
integrate numerically, tabullate the result as a 
function of temperature and proceed. There are
several reasons why this doesn’t usually work 

• The energies of importance in stars, which can wait a long
time for a reaction to occur, are generally so low that the 
cross section  is too small to measure directly.

• The targets are of sometimes radioactive and can’t be made
or handled in the laboratory

• There are too many reactions of interest

Consequently one must use a combination of measurement,
extrapolation, and theory to get useful answers

The actual form of s may be very complicated and depends upon the 
presence or absence of resonances however, it is of the form …



           σ (E) = π!2 ρPl(E) Χ(E)
geometry      penetration                nuclear
term            factor                        structure

   

 =


p
 = 

1

k

How much the nucleus I+j looks 
like the target nucleus I with j 
sitting at its surface. Liklihood
of staying inside R once you get 
there.

Area subtended by a 
de Broglie wavelength 
in the c/m system. 
Characteristic quantum 
mechanical dimension
of the system

probability a flux of
particles with energy E
at infinity will reach the 
nuclear surface. Must account
for charges and QM reflection.

see Clayton Chapter 4

(Cla 4-180)

The barrier penetration term  and an overall 
quantum mechanical dimension don’t depend on 
what happens inside the nucleus

   π!
2 ρPl(E)

all the uncertain physics that goes on inside the 
nucleus once the reactants have penetrated within
the (well-defined) boundary of the nucleus is in 

  Χ(E)

X can be slowly varying with energy – as  in
“non-resonant” reactions – or rapidly varying –
as in resonant reactions.

Here ! is the de Broglie wavelenth in the c/m system

π!2 = π!2

µ2v2 =
π!2

2µE
= 0.656barns

Â E(MeV)
and 1 barn = 10-24 cm2  is large for a nuclear cross section.
Note that generally E(MeV) < 1 and ! > Rnucleus  but

much smaller than the interparticle spacing.

 

µ= m1m2

m1 +m2

KE = 1
2
µv1,2

2 !v1,2 =  !v1−
!v2

Â= A1A2

A1 + A2

~ 1 for neutrons and protons if A1 is large

~ 4 for α -particles if A1 is large

  
e.g., 12C(p,γ )13N Â=

12( ) 1( )
12+1( ) =

12
13

For discussion of center of mass energy see

https://www.youtube.com/watch?v=lhwxK49d28Q
https://www.youtube.com/watch?v=mjrQHIJj1iI

ρPl  gives the probability of barrier penetration to the nuclear radius R with 

angular momentum l.  Sometimes the ρ  is absorbed ino the definition of Pℓ.

Here it is not. Under stellar conditions  for charged particles
it is usually very small,

                           ρPl =
ρ

Fl
2(η,ρ) +Gl

2(η,ρ)
where Fl  is the regular Coulomb function

                                                                                    and Gl  is the irregular Coulomb function

See Abramowitcz and Stegun, Handbook of  Mathematical Functions, p. 537
These are functions of the dimensionless variables

                                    η=
ZIZ j e

2

!v
=0.1575ZIZ j Â / E

ρ= 2µE
!2

R=0.2187 ÂE Rfm

e.g., Illiadis 2.162

contains all the charge dependence

contains all the radius dependence

Barrier Penetration
See Clayton Chapter 4.5 and 

Appendix 1 to this lecture for derivation



Physical meaning of η=
ZIZ je

2

!v

The classical turning radius, r0 , is given by 

                         1
2
µv2 = 

ZIZ je
2

r0
The de Broglie wavelength on the other hand is

                        != "
p
= !
µv

Hence               η=
r0
2!

 i.e., half the turning radius measured

 in units of the DeBroglie wavelength

The probability of finding the particle inside of its classical turning
radius decreases exponentially with this ratio.

., both and are dimensionless.nb η ρ
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On the other hand, 

ρ=
2µE


2

R =
R



is just the size of the nucleus measured in de Broglie

wavelengths. 

This enters in, even when the angular momentum and 

charges are zero, because an abrupt change in potential 

at the nuclear surface leads to reflection of the wave 

function.
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For low interaction energy, (2η>>ρ,  i.e., E << 
ZIZ je

2

R
) 

and Zj ≠0, ρPl has the interesting limit

   ρPl ≈ 2ηρ exp −2πη+4 2ηρ − 2l(l +1)
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where

2ηρ = 0.2625 ZIZ j ÂRfm( )1/2

is independent of energy and angular momentum but depends on nuclear size.

Note:
              rapid decrease with smaller energy and increasing charge(η ↑ )
              rapid decrease with increasing angular momentum

The leading order term for any constant ℓ is proportional to

                     ρPl ∝ exp −2πη( )

Abramowitz and Stegun,
14.6.7

              η=
ZIZ j e

2

v
=0.1575ZIZ j Â / E

ρ = 2µE
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R=0.2187 ÂE Rfm

  

There exist other interesting limits for ρP
l
,  

for example when η is small - as for neutrons where it is 0

                      ρ∝E1/2 ρ P
0
=ρ

ρ P
1
=

ρ3

1+ρ2

ρP
2
=

ρ5

9 + 3ρ2
+ρ4

This implies that for l = 0 neutrons
the cross section will go as 1/v.

   
i.e., π2 ρ P

0
∝

E
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E
∝ E
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ρ <<1  for cases of interest
          for neutron capture

For low energy neutron induced reactions, the 
cross section times velocity, i.e., the reaction rate
term, is approximately a constant w/r temperature
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Z

I
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For particles with charge, providing  X(E) does not vary rapidly.
with energy (exception to come), i.e., the nucleus is "structureless"

                      σ (E) = π!2ρPl X (E) ∝ e−2πη

E

This motivates the definition of an "S-factor"

S(E)=σ (E) E exp(2πη)

η=0.1575ZI Z j Â / E

Â =
AI Aj

AI + Aj

This S-factor should vary slowly with energy. The first order 
effects of the Coulomb barrier and Compton wavelength have been
factored out. This is what was plotted in the figure several slides
back. Its residual variation reflects nuclear structure and to a lesser
extent corrections to the low energy approximation. 

10-4

-10-12

barrier
penetration

resonance

Cross section with the DeBroglie and
barrier penetration part divided out. 
Proportional to X(E).



 

For those reactions in which S(E) is a slowly varying function of energy 
in the range of interest and can be approximated by its value at the energy 
where the integrand is a maximum, E0,

          σ (E)  S(E0 )
E

exp(−2πη)

NA σ v ≈ NA
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where  η(E) =0.1575 Â / E(MeV ) ZIZ j

The quantity in the integral looks like

For accurate calculations we would just enter the 
energy variation of S(E) and do the integral numerically. 
However, Clayton shows (p. 301 - 306) that 

exp −E
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 where Eo is the Gamow  Energy,  where the Gaussian has its peak

     E0 = πηE1/2kT( )2/3
; ηE1/2  =0.1575 Â ZIZ j; kT = T9

11.6045

Eo  = 0.122 ZI
2Z j

2ÂT9
2( )1/3

 MeV

and Δ is its full width at 1/e times the maximum

             Δ = 4
3
EokT( )1/2  = 0.237 ZI

2Z j
2ÂT9

5( )1/6
 MeV

Δ is approximately the harmonic mean of kT and E0

and it is always less than E0

e.g.  3He(α,γ )7Be   at 1.5 x 107  K

Eo  = 0.122 ZI
2Zj

2ÂT9
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 MeV

Â =
3( ) 4( )
3 + 4

= 1.714; T9 =0.015; ZI =Zj = 2

Eo =0.122 2( )2
2( )2

1.71( ) 0.015( )2( )1/3

 MeV

     =  0.02238 MeV = 22.4 keV
Similarly

Δ = 0.237 ZI
2Zj

2ÂT9
5( )1/6

=0.0124 MeV = 12.4 keV
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FIG. 5 (Color online) S
34

(E) vs. E. Data points: LUNA -
green circles; Weizmann - red squares; UW-Seattle - blue dia-
monds; ERNA - brown triangles. Solid curve - best fit scaled
Nollett theory to the data with E  1.002 MeV. The yellow
band indicates the ±1-� error band. Data are shown with
statistical-plus-varying-systematic errors only; overall system-
atic errors are not included.

probed by capture experiments above 1 MeV. With the
exception of Mohr et al. (1993) and Mohr (2009), phase-
shift fitting for studies of the 3He(↵, �)7Be reaction has
been based almost entirely on the phase-shift analysis of
Tombrello and Parker (1963b). While this phase-shift
analysis provides a useful constraint, it depends mainly
on a single experiment from the early 1960s, and it does
not include an error estimation. The modern Mohr et al.
(1993) experiment extended to lower energies, but it has
no published error estimate or phase-shift analysis.

C. S
34

(0) determination

Figure 5 shows the low energy data with E  1.23
MeV, and the fit obtained by scaling the Nollett (Kim A
potential) theory to best match the data with E  1.002
MeV. We used the analytic function

S34(E) = S34(0) e
�0.580E

⇥ (1� 0.4054E2 + 0.577E3 � 0.1353E4), (35)

where E is in units of MeV. Below one MeV this expres-
sion is valid to better than 0.3%, on average.
The best-fit curve in Fig. 5 was obtained by fitting

each data set separately with the scaled theory, and then
fitting the set of four S34(0) values to determine the mean
S34(0) value and its error.
As can be seen from Table III, the fits to the individ-

ual data sets are good, indicating consistency with the
theoretical energy dependence, within the limited energy
ranges of each set. The fit to the combined set of four
S(0) values is of marginal quality, indicating a lack of
good agreement in the absolute normalizations of the dif-
ferent experiments. The combined fit has �2/dof = 2.3

TABLE III Experimental S
34

(0) values and 1-� uncertainties
determined from fits of the scaled Nollett (Kim A potential)
theory to published data with E  1.002 MeV. Total errors
are quoted, including inflation factors, and systematic errors
of LUNA: ± 2.9%; Weizmann: ± 2.2%; UW-Seattle: ± 3.0%;
ERNA: ± 5.0%.

Experiment S
34

(0) Error Inflation

(keV b) (keV b) Factor

LUNA 0.550 0.017 1.06

Weizmann 0.538 0.015 1.00

UW-Seattle 0.598 0.019 1.15

ERNA 0.582 0.029 1.03

Combined result 0.560 0.016 1.72

(dof = 3), corresponding to P(�2, dof) = 0.07. All of
the errors given in Table III include the inflation factors
determined from the goodness of fit (see the Appendix,
Sec. XIII.B). Fits to these data using the scaled theory of
Kajino yield slightly smaller �2 values, and reproduce the
low-energy UW-Seattle data somewhat better; however,
the mean S34(0), 0.561 keV b, is essentially identical to
the result obtained with Nollett’s theory.
We have focused here on measurements published since

Solar Fusion I. We do so because in general they are
better documented than the older ones, and address is-
sues such as contaminant 7Be production in a quantita-
tive manner that lends greater confidence to the results.
One may judge from the Kajino-fit analysis presented
in Brown et al. (2007), that including older measurements
would lower the mean S(0) by at most 0.01 keV b or so.
Thus including the older measurements would not change
our result significantly.
Given the marginal quality of the mean experimental

S34(0) fit, we round o↵ the values given above, and quote
a “best” result,

S34(0) = 0.56± 0.02(expt)± 0.02(theor) keV b, (36)

based on activation data and the ERNA recoil data, and
taking the theoretical error from Sec. VI.B.3.
Our best S34(0) estimate may be compared to the value

S34(0) = 0.53 ± 0.05 keV b given in Solar Fusion I.
New capture experiments below 1 MeV would be most

valuable for reducing the experimental uncertainty in
S34(E), particularly ones that maximize overlap with the
existing modern data sets. New scattering and capture
experiments above 1 MeV, as well as precise angular dis-
tribution measurements, could be useful for constraining
future theoretical calculations. 1

1 Note added in proof: Recent fermionic molecular dynamics
(FDM) calculations (Ne↵ et al., 2010) of S

34

(E) are in excellent
agreement, in both absolute magnitude and energy dependence,
with the experimental data shown in Fig. 5 and with the high-



In that case, the integral of a Gaussian is analytic*

NA σ v = 4.34×108

Â ZIZ j

S(E0 ) τ 2e−τ cm3 / (Mole s)

where S(E0 ) is measured in MeV barns.   If we define

λ jk = NA σ jkv

then a term in the rate equation for species I such as Yjρλ jk  has units
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Different people use different
conventions for λ which sometimes 
do or do not include ρ or NA. This 
defines mine. Clayton does not innclude
NA.

Clayton 4-54 and 56
uses S in keV b
and leaves out NA
otherwise the same
answer.

differs from Clayton which
measures T in 106 K
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*See Appexdix 2 for integral
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Adelberger (2006) gives corrections (from Bahcall 1966)
for derivatives of S. His eq 4

If derivatives are known use Seff instead of S(E0) in the 
integral.

Adelberger et al, RMP, (2011)
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TABLE I The Solar Fusion II recommended values for S(0), its derivatives, and related quantities, and for the resulting
uncertainties on S(E) in the region of the solar Gamow peak – the most probable reaction energy – defined for a temperature
of 1.55 ⇥ 107K characteristic of the Sun’s center. See the text for detailed discussions of the range of validity for each S(E).
Also see Sec. VIII for recommended values of CNO electron capture rates, Sec. XI.B for other CNO S-factors, and Sec. X for
the 8B neutrino spectral shape. Quoted uncertainties are 1�.

Reaction Section S(0) S0(0) S00(0) Gamow peak

(keV-b) (b) (b/keV) uncertainty (%)

p(p,e+⌫
e

)d III (4.01 ± 0.04)⇥10�22 (4.49 ± 0.05)⇥10�24 � ± 0.7

d(p,�)3He IV (2.14+0.17

�0.16

)⇥10�4 (5.56+0.18

�0.20

)⇥10�6 (9.3+3.9

�3.4

)⇥10�9 ± 7.1 a

3He(3He,2p)4He V (5.21 ± 0.27) ⇥ 103 �4.9 ± 3.2 (2.2 ± 1.7) ⇥ 10�2 ± 4.3 a

3He(4He,�)7Be VI 0.56 ± 0.03 (�3.6 ± 0.2)⇥10�4 b (0.151 ± 0.008)⇥10�6 c ± 5.1
3He(p,e+⌫

e

)4He VII (8.6 ± 2.6)⇥10�20 � � ± 30
7Be(e�, ⌫

e

)7Li VIII See Eq. (40) � � ± 2.0

p(pe�,⌫
e

)d VIII See Eq. (46) � � ± 1.0 d

7Be(p,�)8B IX (2.08 ± 0.16)⇥10�2 e (�3.1 ± 0.3)⇥10�5 (2.3 ± 0.8)⇥10�7 ± 7.5
14N(p,�)15O XI.A 1.66 ± 0.12 (�3.3 ± 0.2)⇥10�3 b (4.4 ± 0.3)⇥10�5 c ± 7.2

aError from phenomenological quadratic fit. See text.
bS0(0)/S(0) taken from theory; error is that due to S(0). See text.
cS00(0)/S(0) taken from theory; error is that due to S(0). See text.
dEstimated error in the pep/pp rate ratio. See Eq. (46)
eError dominated by theory.
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Thursday, March 18, 2010FIG. 1 The stellar energy production as a function of temper-
ature for the pp chain and CN cycle, showing the dominance
of the former at solar temperatures. Solar metallicity has
been assumed. The dot denotes conditions in the solar core:
the Sun is powered dominantly by the pp chain.

that the SSM was designed to describe. The sound speed
profile c(r) has been determined rather precisely over the
outer 90% of the Sun and, as previously discussed, is now
in conflict with the SSM, when recent abundance deter-
minations from 3D photospheric absorption line analyses
are used.

A. Rates and S-factors

The SSM requires a quantitative description of relevant
nuclear reactions. Both careful laboratory measurements
constraining rates at near-solar energies and a supporting
theory of sub-barrier fusion reactions are needed.
At the temperatures and densities in the solar inte-

rior (e.g., T
c

⇠ 15.5 ⇥ 106 K and ⇢
c

⇠ 153 g/cm3 at
the Sun’s center), interacting nuclei reach a Maxwellian
equilibrium distribution in a time that is infinitesimal
compared to nuclear reaction time scales. Therefore, the
reaction rate between two nuclei can be written (Bur-
bidge et al., 1957; Clayton, 1968)

r12 =
n1 n2

1 + �12
h�vi12. (3)

Here the Kronecker delta prevents double counting in
the case of identical particles, n1 and n2 are the number
densities of nuclei of type 1 and type 2 (with atomic
numbers Z1 and Z2, and mass numbers A1 and A2), and
h�vi12 denotes the product of the reaction cross section
� and the relative velocity v of the interacting nuclei,
averaged over the collisions in the stellar gas,

h�vi12 =

Z 1

0

�(v) v �(v) dv. (4)

Under solar conditions nuclear velocities are very well
approximated by a Maxwell–Boltzmann distribution. It
follows that the relative velocity distribution is also a
Maxwell–Boltzmann, governed by the reduced mass µ of
the colliding nuclei,

�(v) dv =
⇣ µ

2⇡kT

⌘3/2

exp

✓
� µv2

2kT

◆
4⇡v2 dv. (5)

Adelberger et al, RMP, (2011)
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TABLE XII Summary of updates to S-values and derivatives for CNO reactions.

Reaction Cycle S(0) S0(0) S00(0) References

keV b b keV�1 b
12C(p, �)13N I 1.34± 0.21 2.6⇥10�3 8.3⇥10�5 Recommended: Solar Fusion I
13C(p, �)14N I 7.6 ± 1.0 -7.83⇥10�3 7.29⇥10�4 Recommended: Solar Fusion I

7.0± 1.5 NACRE: Angulo et al. (1999)
14N(p, �)15O I 1.66± 0.12 -3.3⇥10�3 4.4⇥10�5 Recommended: this paper
15N(p,↵

0

)12C I (7.3± 0.5)⇥104 351 11 Recommended: this paper
15N(p, �)16O II 36± 6 Mukhamedzhanov et al. (2008)

64± 6 Rolfs and Rodney (1974)

29.8± 5.4 Hebbard (1960)
16O(p, �)17F II 10.6± 0.8 -0.054 Recommended: this paper
17O(p,↵)14N II Resonances Chafa et al. (2007)
17O(p, �)18F III 6.2± 3.1 1.6⇥10�3 -3.4⇥10�7 Chafa et al. (2007)
18O(p,↵)15N III Resonances See text
18O(p, �)19F IV 15.7± 2.1 3.4⇥10�4 -2.4⇥10�6 Recommended: Solar Fusion I

reactions under study, as tools to probe properties of the
solar reactions. References have been made in this review
to three indirect methods, asymptotic normalization co-
e�cients, Coulomb dissociation, and the Trojan horse
method. As the connection between the indirect observ-
able and the solar reaction of interest must be established
through reaction theory, such methods entail a greater
degree of model dependence, impacting systematic un-
certainties. But indirect methods also have many virtues:
they can be applied when direct measurements are di�-
cult or impossible, have systematic uncertainties that are
di↵erent from those of direct measurements, and provide
supplementary information that can constrain R-matrix
and other models used in the extrapolation of data from
direct measurements. The role of indirect measurements
in validating and constraining models is apparent from
the discussions, for example, of Sec. XI.A.

A. The asymptotic normalization coe�cient method

The asymptotic normalization coe�cient method con-
strains S(0) by exploiting the peripheral nature of many
radiative capture reactions in nuclear astrophysics. Be-
cause of Coulomb and/or centrifugal barriers, most (p,�)
and (↵, �) reactions are peripheral at solar energies. The
cross section for a nonresonant radiative capture reac-
tion A(p, �)B at zero relative energy depends only on the
long-distance behavior of the p+A wave function (and
on the overlap of that extended wave function with B).
The detailed short-range behavior of the scattering state
p+A or bound state B, governed by the strong interac-
tion and nuclear length scales, are not relevant to the
reaction mechanism. The bound-state wave function at
long distances will contain a component corresponding
to two separated clusters, p and A, with the cluster rel-
ative radial motion given by a Whittaker function. The

asymptotic normalization coe�cient (ANC) is defined as
the amplitude of this component (apart from an over-
all phase) (Mukhamedzhanov and Timofeyuk, 1990; Xu
et al., 1994). A distinct ANC will govern the nonresonant
capture into each final state, i.e., the ground or bound
excited states of B. Therefore, if one can identify another
nuclear reaction that includes the vertex A + p $ B and
is sensitive only to the tail of the radial overlap function,
the needed ANC can be determined from that reaction.
This measurement in a di↵erent system then determines
the radiative capture cross section at zero relative energy
(Mukhamedzhanov et al., 2001), up to small corrections
determined by the scattering wave function and the po-
tential in the continuum (Capel and Nunes, 2006; Typel
and Baur, 2005). While the method is limited to S(0),
providing a data point below the Gamow peak, this often
complements the data from direct measurements, which
are frequently limited to energies above the Gamow peak.

In most applications, the ANC is deduced from trans-
fer reactions. The extraction relies on the distorted wave
Born approximation (DWBA) and the direct proportion-
ality between the transfer cross section and the square of
the ANC. Provided that the transfer reaction is com-
pletely peripheral and the measured angular distribu-
tions are well described within the single-step DWBA,
the ANC can be extracted. The main source of uncer-
tainty comes from the optical model description, typically

⇠> 10% for reactions above the Coulomb barrier. For this
reason, it is often important to also measure the elas-
tic channel of the corresponding transfer reaction over
a wide angular range, to help constrain optical model
parameters. Investigations of e↵ects beyond the single-
step DWBA arising from target excitation suggest that
deformed targets with strong couplings to low-lying ex-
cited states are not good candidates for the ANC method
(Azhari et al., 2001). Some of the applications of the
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Temperature dependence of reaction rates (constant S(E))
For example, 12C + 12C  at 8 x 108 K
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p + p  at 1.5 x 107 K
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This is all predicated upon S(Eo ) being constant, or at 
least slowly varying within the “Gamow window”

 
E

o
± Δ / 2

This is true in many interesting cases, especially
for light nuclei (no resonances or a single broad
resonance) and very heavy ones (very many 
resonances in the window so that average properties 
apply).  But it is not always true.

• Truly non-resonant reactions (direct capture and
the like)

• Reactions that proceed through the tails of broad 
distant resonances

• Reactions that proceed through one or a few 
�narrow� resonances within the “Gamow window”

• Reactions that have a very large number of 
resonances in the �Gamow window�

S(E) ~ const

S(E) ~ const

S(E) highly
variable

S(E)~ const



Reaction Mechanisms
1) Direct Capture - an analogue of atomic radiative capture

The target nucleus and incident nucleon (or nucleus) react 
without a sharing of energy among all the nucleons. An example 
be the direct radiative capture of a neutron or proton and
the immediate ejection of one or more photons. The ejected photons 
are strongly peaked along the trajectory of the incident projectile.
The reaction time is very short, ~ R/c ~10-21 s.

This sort of mechanism dominates when there are no strong
resonances in or near the  Gamow window. It is especially important 
at low energies in light nuclei where there are few resonances 

The S-factor for direct capture is smooth and featureless.

Examples:

 

3 He(α ,γ )7Be, 2H(p,γ )3He, 3He(3He, 2p)4He

12C(n,γ )13C,  48Ca(n,γ )49Ca

Direct capture provides a mechanism for reaction in 
the absence of resonances. Usually DC cross sections are
much smaller than resonant cross sections on similar 
nuclei - if a resonance is present.

2) Resonant Reaction:

A two step reaction in which a relatively long-lived 
excited state of the �compound nucleus� is formed 
– the �resonance�. This state decays statistically without 
any memory (other than energy and quantum numbers) 
of how it was produced. The outgoing  particles are not
peaked along the trajectory of the incident particle.
(This is called the �Bohr hypothesis� or the �hypothesis 
of  nuclear amnesia�). The presence of a resonance says 
that the internal structure of the nucleus is important and 
that a �long-lived�state is being formed.

I+j

Excited
State of L

For the reaction I(j,γ)L

Γ

E

  
τ = lifetime of state = 

!
Γ

E is the energy of I + j  in the center of mass frame
and the state is characterized by a width Γ (in energy
units) given by its lifetime against all the ways it can decay,
photon emission being one of them. The excited state
has a certain spin and parity and, depending on the values
might serve as a resonance for the reaction. Some reactions
proceed directly to the ground state.

γ

L

width Γ



Resonances may be broad or narrow. The width is given 
by the  (inverse of the ) lifetime of the state and the 
uncertainty principle. 

Generally states that can  decay by emitting a neutron 
or proton will be broad (if the proton has energy greater 
than the Coulomb barrier.  Resonances will be narrow 
if they can only decay by emitting a  photon or if the 
charged particle has energy << the Coulomb barrier..

  
ΔEΔt  

τ =


Γ
tot

Γ
tot
= Γ

k∑  = 6.582×10
−22
MeVsec

2.366              Excitation energy
- 1.944              Q value for (pγ)

0.422 MeV    Threshold c/m 

13

12
(422) = 457

S(
E)

The energy scale is given in the center of mass
fram (422 keV) needs to be converted to the lab
frame to compare with lab data. Multiply by 
(A1+A2)/(A1A2)

E.g., a broad resonance
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=0.0163 MeV = 16.3 keV

For this case the S factor is slowly varying in the Gamow “window”.

Say hydrogen burning at 2 x 107 K, or T9 = 0.020

Note there is no data at energies this low.
As is generally the case, one must extrapolate the experimental
date to lower energies than are experimentally accessible.  The 
S-factor is useful for this.

12
C(p,γ )13N

  

E
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=0.447 MeV 

This reaction might be of interest either in hot hydrogen burning
at 30 million K or in carbon burning at 800 million K. Consider the 
latter.

That is energies up to 1 MeV are important
Now three resonances and direct capture contribute.

24Mg(p,γ )25AlConsider, however,  the reaction



Another Example:

Resonance contributions are on top of direct capture cross sections

RESONANT PLUS
… and the corresponding S-factor

~ constant S-factor
for direct capture

Not constant S-factor
for resonances
(log scale !!!!)

Note varying widths and
effects for E >> G !

The cross section contribution due to a single resonance is given by the 
Breit-Wigner formula:

 

σ (E) = π
2

⋅ ω ⋅
Γ
1
Γ
2

(E − E
r
)
2
+ (Γ / 2)

2

ω =
2J

r
+1

(2J
1
+1)(2J

2
+1)

Usual geometric factor

=
0.656

Â

1

E
barn

Spin factor:

1
Γ∝ Partial width for decay of resonance

by emission of particle 1
= Rate for formation of  Compund

nucleus state

2
Γ∝ Partial width for decay of resonance 

by emission of particle 2
= Rate for decay of Compund nucleus

into the right exit channel

Γ = Total width is in the denominator as 
a large total width reduces the maximum 
probabilities (on resonance) for
decay into specific channels.

See appendix 3 and Clayton
for derivation.

One can perform the Maxwell Boltzman integral analytically (Clayton 4-193):

N
A
< σv >= 1.54 ⋅10

11
(AT9 )
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−11.605 E
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[MeV]
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3
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+1)(2J
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Γ
1
Γ
2

Γ

For the contribution of a single narrow resonance to the stellar reaction rate:

The rate is entirely determined by the �resonance strength�ωγ

Which in turn depends mainly on the total and partial widths of the resonance at 
resonance energies. 

Often Γ = Γ
1
+ Γ

2
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And reaction rate is determined by the smaller one of the widths !



Illiadis Table 4.12

here ρ is the 
density and Ω is
the partition function

As one goes to heavier nuclei and/or to higher excitation
energy in the nucleus, the number of excited states, and hence
the number of potential resonances increases exponentially.

Why? The thermal energy of a non-relativistic, nearly degenerate
gas (i.e., the nucleus) has a leading term that goes as T2  where
T is the �nuclear temperature. The energy, E, of a degenerate gas
from an expansion of Fermi integrals  is:

E = f(ρ) + a(kT)2
+  b (kT)4  + ....

One definition of temperature is 

            
1

kT
 = 

∂ lnΩ

∂E

 where Ω  is the number of states (i.e., the partition function)

∂ lnΩ

∂T
=
∂ lnΩ

∂E

∂E

∂T

1

T
=
∂S

∂E
S = k lnΩ  defines T

As one goes up in 
excitation energy many 
more states and many 
more reactions become 
accessible.

The number of excited states
(resonances) per unit excitation
energy increases exponentially
with the square root of the 
excitation energy.

d lnΩ ~ 1
kT

∂E
∂T

⎛
⎝⎜

⎞
⎠⎟ dT  ~  1

kT
2ak2T( )  dT

ln Ω ~  2ak dT∫ = 2akT + const

          Ω ~ C exp 2akT( )
 and if we identify the excitation energy, Ex  ≈  a(kT)2,
i.e., the first order thermal correction to the internal energy, then

                 kT( )2  ~ Ex

a
        Ω = C exp 2 aEx( )
Empirically a ≈  A/9. There are corrections to a for shell
and pairing effects.  In one model (back-shifted Fermi gas)

             C = 0.482
A5/6Ex

3/2

Note that T here is not the 
stellar temperature but a ficticous
temperature for the nucleons in 

the nucleus. The ground state has
T = 0



  

Generate an energy averaged cross section

             σ =
σ (E)dE

E

E+ΔE

∫
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∝ 1
ΔE 1
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Take N (>>1) equally spaced identical resonances in an energy interval ∆E.
For example, assume they all have the same partial widths.
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D

D << ∆E

DE

What is the cross section when the density of resonances is large? This gives the Hauser-Feshbach formula for estimating 
cross sections where the density of resonances is high.

 

σ jk (E) =
π

2

2JI +1( ) 2J j +1( )
2Jr +1( )

all

Jr
π

∑
Tj

l
(J

π
,E)Tk
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π
,E)

Ttot (J
π
,E)

Expressions for the transmission functions for n, p, α, and g
are given in Woosley et al, ADNDT, 22, 378, (1978). See also
the appendix here. A transmission function is like an average
strength function for the reaction over the energy range of interest.
It includes the penetration function. It is dimensionless and
less than 1. See appendix 4 for derivation and details.

This formula has been used to generate thousands of cross sections
for nuclei with A greater than about 24. The general requirement 
is many ( > 10) resonances in the Gamow window.



Q2
Q1

Tγ (Q2 ) > Tγ (Q1)

and as a result

                   σ nγ ∝
Tn  Tγ

Tn  + Tγ

≈ Tγ

is larger if Q is larger

More levels to make
transitions to at higher
Q and also, more
phase space for the 
outgoing photon.

Eγ

3   for electric dipole

The Q-value for capture on nuclei that are tightly
bound (e.g., even-even nuclei, closed shell nuclei)
is smaller than for nuclei that are less tightly bound 
(e.g., odd A nuclei, odd-odd nuclei).

As a result, nuclear stability translates into smaller
cross sections for destruction - most obviously for
nuclei made by neutron capture, but also to some
extent for charged particle capture as well.

This is perhaps the chief reason that tightly bound 
even mass nuclei above the iron group are more abundant
in nature  than their less tightly bound odd mass neighbors. 

Summary of reaction mechanisms
I(j,k)L

Summary of reaction mechanisms
I(j,k)L

• Add the Gamow energy E0 to Q-value and look 
inside nucleus I+j

• Any resonances nearby or in window

No                                 Yes

Right spin and parity?

No              Yes

Tail of        A few          Many 
Broad       Narrow        Overlapping

Direct                   Extrapolate      Breit- Hauser-
Capture                  S-factor           Wigner         Feshbach



Special Complications in Astrophysics

• Low energy = small cross section – experiments are hard.

• Very many nuclei to deal with (our networks often include
1600 nuclei; more if one includes the r-process)

• The targets are often radioactive and short lived so that 
the cross sections cannot be measured in the laboratory
(56Ni, 44Ti, 26Al, etc)

• Sometimes even the basic nuclear properties are not know
- binding energy, lifetime. E.g., the r-process and the rp-

process which transpire near the neutron and proton-
drip lines respectively.

• Unknown resonances in many situations

• Target in excited state effects – in the laboratory the 
target is always in its ground state. In a star, it may not be

• Electron screening
Nuclei are always completely ionized – or almost
completely ionized at temperature in stars where 
nuclear fusion occurs. But the density may be 
sufficiently high that two fusing nuclei do not
experience each others full Coulomb repulsion.

This is particularly significant in Type Ia supernova
ignition.



Electron screening is generally treated in two limiting 
cases. 

Weak screening: (Salpeter 1954)

The electrical potential of the ion is adjusted to 
reflect the presence of induced polarization in the background
electrons. The characteristic length scale for this screening
is the Debye length 
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Clayton  2-238 and discussion before

This is the typical length scale for the clustering of charge
in the plasma. Weak screening holds if RD >> nZ

-1/3
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   Compare with Clayton 2-235

                                           Differs by 3
ρNAYZ = nZ

  

Roughly the ion sphere is the volume over
which a given ion can "polarize" the surrounding
electron cloud when that cloud has a thermal 
energy ~kT.  Its size is given by equating thermal
kinetic energy to electrical potential energy.
The charge within such a cloud is (Volume)(ne e)  

and the charge on each ion is Ze. The volume is 4/3 πRD
3  

and ne  = ZnZ . So

In general must include
more than one kind of 

ions and the interaction 
among electrons and 
among ions, not only

between ions and electrons,

These “Coulomb correction”
affect the pressure and energy
of a gas, not just reaction rates

The modified Coulomb potential is then 

V =
e
2
Z

r
exp(−r / R

D
)

Clayton eq. 4-215 and discussion leading up to it
shows that, in the limit that RD >> the inter-ion 
separation, then the effect of screening is an overall
reduction of the Coulomb potential by an energy 

U
o
=
Z
I
Z
j
e
2

R
D

This potential does not vary greatly over the region where 
the rate integrand is large (Gamow energy)

The leading order term in the screening correction
(after considering  Mawell Boltzmann average) is
then  (Clayton 4-221; see also Illiadis 3.143)

f ≈ 1−
Uo

kT
= 1+0.188ZIZ j ρ

1/2ς 1/2 T
6

−3/2

Strong screening:  Salpeter (1954); Salpeter and 
van Horn (1969)

If  RD  becomes less than the inter-ion spacing,
then the screening is no longer weak. Each ion of
charge Z is individually screened by Z electrons.
The radius of the “ion sphere” is 

R
Z
=

3Z

4πn
e
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1/3

i.e.
4πR

Z

3

3
n
e
= Z

e.g., the screening
for p+p at the 
solar center is
about 5% - Illiadis
P 210

U0 << kT



Clayton 2-262, following Salpeter (1954)
shows that the total potential energy of the ion sphere, 
including both the repulsive interaction of the electrons 
among themselves and the attractive interaction with 
the ions, is  

U = − 9
10

Ze( )2

RZ

⎛

⎝⎜
⎞

⎠⎟
=−17.6 Z 5/3 ρYe( )1/3 eV <<  Gamow energy E0

and the correction factor to the rate is exp(-Uo / kT )>>1 with

−U0 =17.6 ρYe( )1/3 ZI +Z j( )5/3
− ZI

5/3 − Z j
5/3⎡

⎣⎢
⎤
⎦⎥   eV    (Cla 4-225)

More accurate treatments are available, but this can
clearly become very large at high density. See Itoh et al.
ApJ, 586, 1436, 2003

Appendix 1:

Solution of Schrodingers
Equation for Two Charged

Particles with Angular Momentum

   

Clayton p. 319ff shows that  Schroedinger's
equation for two interacting particles in a radial 
potential  is given by (Cla 4-122) [see also our Lec 4]

                        Ψ(r, θ ,φ) = 
χ l (r)

r
Yl

m (θ ,φ)

where  χ(r) satisfies

-2

2µ
d 2

dr 2 + l(l +1)2

2µr 2 +V (r) − E
⎡

⎣
⎢

⎤

⎦
⎥ χ l (r)=0   

V (r)=
Z

I
Z

j
e

2

r
r >R

  
V (r)=V

nuc
r < R

for interacting particles with both charge and angular 
momentum. The angular momentum term represents the
known eigenvalues of the operator L2 in a spherical potential

potential

(Clayton 4-103)

Suppose X(E) is slowly varying
Consider just the barrier penetration part (R < r  < infinity)
where R is the nuclear radius (where the strong interaction dominates).

 

*The 1/r cancels the r2  when integrating Ψ*Ψ over
solid angles (e.g. Clayton 4-114). It is not part  of
the potential dependent barrier penetration calculation.

*

Like the one-electron
atom except for r < R

 

Classically, centrifugal force goes like 

             Fc  = mv2

R
= m2v2R2

mR3 = L2

mR3

One can associate a centrifugal potential with this,

                       Fc dR∫      = −L2

2mR2

Expressing things in the center of mass system and 
taking the usual QM eigenvaluens for the operator L2

one has 

                           −l(l +1) 2

2µR2



   

To solve, do some variable substitutions

-!2

2µ
d 2

dr 2 + l(l +1)!2

2µr 2 +V (r) − E
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⎣
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⎤

⎦
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divide by E and substitute for V(r)  for r  >R
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Change of radius variable. Substitute for r 

           ρ =
2µE
!2 r dρ → 2µE

!2 dr d 2ρ → 2µE
!2 d 2r

 and for Coulomb interaction

                     η=
ZI Z je

2

!v
v= 2E

µ
to obtain

−d 2

dρ2 + l(l +1)
ρ2 + 2η

ρ
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⎣
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⎦
⎥ χ l (ρ)=0

chain rule

 

ρ  and η are dimensionless 
numbers

https://en.wikipedia.org/wiki/Change_of_variables#Differentiation

where  F and G, the regular and irregular Coulomb functions  
are the solutions of the differential equation and the constants 
come from applying the boundary conditions

  

d 2χ
dρ2 + (1− 2η

ρ
− l(l +1)

ρ2 )χ = 0

has solutions (Abromowitz and Stegun 14.1.1)

χ = C1 Fl (η,ρ) + C2 Gl (η,ρ) C1 = 1 C2 = i

The barrier penetration function Pl  is then given by

                     Pl =
χ l (∞)

2

χ l (R)
2 =

Fl
2 (ρ = ∞)+Gl

2 (ρ = ∞)
Fl
2 (η,ρ)+Gl

2 (η,ρ)
= 1
Fl
2 (η,ρ)+Gl

2 (η,ρ)

  

This is the solution for

          R < r   < ∞ 

For the one electron atom with 

a potential 
Ze

2

r
,  one obtains the 

same solution but the radial component

is Laguerre polynomials.

Cla 4-115

The “1” in the numerator corresponds to a 
purely outgoing wave at infinity from a 
decaying state.

http://people.math.sfu.ca/~cbm/aands/

multiply by -1
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2

 Can replace lower bound to intergral E = 
−2E0

Δ
 

by E = - ∞ with  little  loss of accuracy (footnote
    Clayton p 305) so that 

λ= NA

8
πµ

⎛
⎝⎜

⎞
⎠⎟

1/2
1

kT
⎛
⎝⎜

⎞
⎠⎟

3/2

e−τ Δ
2

S(E0) exp −x2⎡⎣ ⎤⎦
−∞

∞

∫ dx

= NA

8
πµ

⎛
⎝⎜

⎞
⎠⎟

1/2
1

kT
⎛
⎝⎜

⎞
⎠⎟

3/2

e−τ Δ
2

S(E0) π

= NA

2
µ

⎛
⎝⎜

⎞
⎠⎟

1/2
1

kT
⎛
⎝⎜

⎞
⎠⎟

3/2

e−τ Δ S(E0)

Δ
(kT )3/2

⎛
⎝⎜

⎞
⎠⎟

= 4

9 3π ηE1/2
τ 2

Appendix 2

   

λ
NA

= 2
µ

⎛
⎝⎜

⎞
⎠⎟

1/2
4

9 3π (0.1575 ZIZ j Â )
τ 2e−τS(E0)  MeV1/2 amu−1/2  barn

  = 
7.2 ×10−16

ÂZIZ j

τ 2 e−τ S(E0) cm3 s−1 (Clay 4 − 56)

λ =NA σv = 4.34×108

ÂZIZ j

S(E0) τ 2e−τ cm3 / (Mole s)

nb. The unit conversion factor  10−24 * (6.02×1023 i 1.602×10−6)1/2

=9.82×10−16 converts MeV1/2 amu−1/2 barn to cm3 /s.

Also change µ  to Â  amu



Decaying states in general have an an energy
distribution given by the Breit-Wigner or Cauchy
distribution (Clayton 3-103)*. The normalized probability
that the state has energy E is

P(E)dE =
Γ / 2π dE

E − ε
r( )

2
+ Γ / 2( )

2

where

                       Γ =


τ

and τ  is the lifetime

* Solve wave function for a quasistationary state 

subject to the constraint that ψ k∫
2
= exp(-t/τ ). Take

Fourier transform of ψ (t) to get ϕ(E) and normalize.

nb. units of energy
but rather like a rate

Appendix 3: How to calculate resonant cross section?
If a reaction is dominated by narrow resonances, its 
cross section will be given by the Breit-Wigner equation
(see page 347 Clayton, also probs. 3-7 and eq, 3-103).

   

σ
jk

(E) = π
2
ω

Γ
j
Γ

k

E − ε
r( )

2

+ Γ
tot

2 / 4
ω =

2J
r
+1

(2J
I
+1)(2J

j
+1)

The Γ�s are the partial widths (like a probability but with
dimensions of energy) for the resonance to break up into 
various channels. These now contain the penetration factors.
The lifetime of a resonance is

τ =


Γ
tot

Γ
tot
= Γ

k∑  = 6.582×10
−22
MeVsec

This cross section will be sharply peaked around εr, with a width Γtot

Γ
tot

= Γ
i∑

Appendix 4:
Barrier Penetration

and Transmission Functions



Reflection at a Potential Change

For simplicity consider the case where the incident particle has no
charge, i.e., a neutron, and take angular momentum, l = 0.

Energy

E
reflected

incident

0

-Vo V(x)

E+Vo

x < 0
Perfectly 
absorbing –
what gets in 
stays in

In QM there exists reflection
whether V increases or 
decreases

   

E = 
p

2

2µ

2µE


=

p


=

2π

λ
=

1


≡ k

   

Wave number for incident particles       k =
2µE


x < 0

                         inside well                   K =
2µ(E +V

o
)


≈

2µV
o



x > 0

Ψ(x)= Aeikx +Be−ikx x<0   Incident wave plus reflected wave

= Ce
iKx

x>0       Wave traveling to the right

Ψ(x), ′Ψ (x)continuous implies  at x=0, A+B=C

                                                               ikA− ikB = iKC

⇒
B

A
=

1−
K

k

1+
K

k

T =1−
B

A

2

=

(1+
K

k
)2

− (1−
K

k
)2

(1+
K

k
)2

=
4K / k

(1+
K

k
)2

=
4Kk

(k + K )2

and if E <<V
o

T =
4k

K
=

4πkR

πKR
=

4πρ

πKR
=4πS f ρP

0

where S =
1

πKR
 is the "black nucleus strength function"

The fraction that �penetrates�
to the region with the new
potential.

0
recall P Rkρ ρ= =

f corrects empiricaly for the fact that the nucleus is
not purely absorptive at radius R 

  

Though for simplicity we took the case

l  = 0 and Z = 0 here, the result can be generalized

to reactants with charge and angular momentum

    For Z= 0 ρ P
0
=ρ l = 0

ρ P
1
=

ρ3

1+ρ2
l = 1

ρP
2
=

ρ5

9 + 3ρ2
+ρ4

l = 2

  

    ρP
l
=

ρ

F
l

2 (η,ρ)+G
l

2 (η,ρ)

For Z > 0

2

0 02

ˆ
0.1575

( )

2 ˆ0.2187 ( )

I j

I j

Z Z e A
Z Z

v E MeV

E
R AE R fm

η

µ
ρ

= =

= =





It is customary to define the transmission function for particles
(not photons)  as

   

T =4π S f (ρPl )

where S, the strength function, could be thought of in terms
of resonance properies as 

S =
Γ j

D
= 32

µR2

θ j
2

D
(see 3 pages ahead)

which is a constant provided that θ j
2 ∝ D,  the level spacing.

This is consistent with the definition

T =2π Γ
D

Here �f� is the �reflection factor�, empirically 2.7 for n and p
and 4.8 for alpha-particles, which accounts for the fact that the 
reflection is less when the potential does not have infinitely
sharp edges at R. Hence the transmission is increased.



But actually the strength function is parameterized in
terms of the black nucleus approximation used in the 
transmission function calculation. Unknown parameters 
are fit to data.

For nuclei A < 65

R = 1.25 A1/3 + 0.1   fm for n,p
1.09 A1/3 + 2.3   fm for alpha particles

   

S =
1

πKR
K =

2µV
o


2

V
o
≈ 60MeV

This is what is used in the Hauser Feshbach formalism

Analogously the photon transmission function is defined as:

3

5

2 Strength function * phase space factor

Phase space E for dipole radiation

                       E  for quadrupole radiation

 

T
D

γ

γ

γ

γ

π
Γ

= =



The strength function is usually taken to be a constant 
or else given a ``Giant Dipole� (Lorentzian) form.

The transmission functions to the ground state and each excited
state are calculated separately and added together to get a total photon
transmission function.

Typically Γγ ~ eV – larger for large ∆E in the transition; smaller if
a large ∆J is required or DE is small.

For nucleons and alpha particles it can be shown (Clayton 330 – 333) 
that 

   

Γ
j

l
=

32

µR2

⎛

⎝⎜
⎞

⎠⎟
θ

j

2 ρP
l
=

125.41 MeV

ÂR2( fm)
θ

j

2 ρP
l

where θj
2 is the �dimensionless reduced width� which must be

evaluated experimentally, but is between 0 and 1 (typically 0.1). 

The resulting widths are obviously very energy sensitive (via ρPl)
but for neutrons and protons not too much less than the Coulomb 
energy, they are typically keV to MeV.

Semi-empirical Γ’s
The decay rate of the state is qualitatively given by (Clayton p 331)

λ ≡probability/sec for particle from decaying system to cross large

                                                     spherical shell

λ =
1

τ
=  velocity at infinity * penetration factor * probability per unit dr

                                                                  that the particle is at the nuclear 

                                                                  radius ± dr

      = 
Γ


= v   P

l

3

R
θ
2
=
ρ

µR

3

R
P
l
θ
2
=
3

µR2
ρP

l
θ 2

                   where 
3

R
=
4πR

2
dr

4 / 3πR
3

 is the probability per unit radius

                             for finding the nucleon if the density is constant

                           θ 2 =dimensionless constant < 1

                           ρ = kR =
µv


R=

2µE


2
R

( )d volume

volume

aside:



Typically Γγ ~ eV – larger for large ∆E in the transition; smaller if
a large ∆J is required or DE is small.

For nucleons and alpha particles it can be shown (Clayton 330 – 333
and appendix to this lecture) that 

   

Γ
j

l
=

32

µR2

⎛

⎝⎜
⎞

⎠⎟
θ

j

2 ρP
l
=

125.41 MeV

ÂR2( fm)
θ

j

2 ρP
l

where θj
2 is the �dimensionless reduced width� which must be

evaluated experimentally, but is between 0 and 1 (typically 0.1).
See appendix to this lecture (last page) 

The resulting widths are obviously very energy sensitive (via ρPl)
but for neutrons and protons not too much less than the Coulomb 
energy, they are typically keV to MeV.

Very approximate estimates for Γ

use this only in the 
absence of any 
experimental data

Rate of reaction through a narrow resonance

Narrow means: Γ << ΔE

In this case, the resonance energy must be �near� the relevant energy range 
∆E to contribute to the stellar reaction rate.

Recall:
< σv >=

8

πµ

1

(kT )
3/2

σ (E)E e
−
E

kT

0

∞

∫ dE

and

 

σ (E) = π
2
ω

Γ
1
(E)Γ

2
(E)

(E − E
r
)
2
+ (Γ(E) / 2)

2

For a narrow resonance assume:

M.B. distribution Φ(E)∝ E e
−
E

kT constant over resonance 
All widths Γ(E) 

Φ(E) ≈ Φ(E
r
)

constant over resonance Γ
i
(E) ≈ Γ

i
(E

r
)

 
2 constant over resonance 

pull out front

 

σ = π2ω
Γ1Γ2

E − E
r( )
2
+   Γ / 2( )

2

σ (E)dE ≈ π
r

2ω Γ1(Er )
0

∞

∫ Γ2 (Er )
dE

(E − E
r
)
2
+ (Γ

r
/ 2)

2

0

∞

∫

2π

Γ
r


