c microsized version of an ``s-process" network. For teaching c purposes only. One hundred isotopes are included c and the initial abundance of the first, nominally fe56 is taken c equal to one. Abundances are calculated for given exposures c tau. Though the ``y" notation is preserved, the abundances may c equally well be thought of as ``n"s. The exposure may either be c thought of as tau, the integral of neutron density, velocity, c and time. dimension y(100), ynew(100), dy(100), signg(100) 5 do 10 i=1,100 10 y(i)=0. c for now take a very simple representation of the cross section c with fake `magic numbers' at 30 and 60 and odd-even effects do 11 i=2,100,2 11 signg(i)=1. do 12 i=1,99,2 12 signg(i)=2. signg(100)=0. signg(30)=.1 signg(60)=.1 y(1)=1. write (6,15) 15 format (' input tau:') read (5,*) tau if (tau.lt.0.) go to 101 dt=1.e-6*tau t=0. ifin=0 20 if (t.gt.tau) go to 99 ynew(1)=y(1)/(1.+signg(1)*dt) dy(1)=y(1)-ynew(1) y(1)=ynew(1) do 30 i=2,100 ynew(i)=(y(i)/dt+y(i-1)*signg(i-1))/(1./dt+signg(i)) dy(i)=ynew(i)-y(i) 30 y(i)=ynew(i) if (ifin.ne.0.) go to 999 call dtnuc(dt,y,dy) t=t+dt go to 20 99 ifin=1 t=t-dt dt=tau-t go to 20 999 t=t+dt write (6,40) t,tau 40 format (2f10.2) do 50 i=1,100 write (6,60) i,y(i) 50 continue 60 format (i5,1pe11.2) go to 5 101 call exit(1) end cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx subroutine dtnuc (dt,y,dy) dimension y(1),dy(1) c c c c delchi is maximum fractional change allowed in number density c chimin is smallest y that can affect the time step c fdtn is maximum enlargement factor for new time step c delchi=0.15 chimin=.001 fdtn=2. tau = fdtn*dt do 100 j = 1,100 if(y(j)-chimin) 100,100,10 10 taug = abs(y(j)/dy(j))*delchi*dt if(taug) 100,100,20 20 if(tau-taug) 100,100,30 30 tau = taug 100 continue dt = tau return end