
AY12 Homework #1 Solutions
Winter 2016

Longer Problems

1. a) As discussed in class, the declination of the Sun on vernal equinox is δ = 0◦ Declination

does not depend on your location on Earth .

b) The angle between the celestial equator and the horizon is 90◦−L, where L is your latitude.
The angle between the celestial equator and the Sun is 0◦. The sum of these two angles is
55◦. Thus 55◦ = (90◦ − L) + 0◦, and hence 78.5◦ N .

c) The Sun will rise due east .

d) On the summer solstice, the Sun’s declination is δ = +23.5◦, so the maximum altitude

reached=(90◦ − 35) + 23.5◦, or 78.5◦ .

2. a) To answer this question, let’s determine the declination of a star that just barely rises
above the horizon for each location. If Alpha Centauri’s declination is greater than this, then
we know we can observe it from that location.

The declination of a star that just barely rises is δ = −(90◦−L), where L is your latitude. For
Lick Observatory, L = 37◦ N, which gives δ = −(90◦ − 37◦) = −53◦. Since Alpha Centauri’s
declination is δ = −60◦ < −53◦, it never rises above the horizon at Lick.

At Keck, doing the same calculation gives δ = −(90◦ − 19.8◦) = −70.2◦, where you can
convert L = 19◦50′N into degrees by 19◦ + 50′ × 1◦

60′ = 19.8◦ This means Alpha Centauri
does rise above the horizon, since its declination is greater than −70.2◦. The astronomer
should use a telescope at Keck.

b) Your longitude can be determined if you know two things: 1) the right ascension of stars
currently on your meridian, and 2) the sidereal time at Greenwich. Your longitude is the
difference between 2) and 1). For this problem, 1) = 6h45m and 2) = 11h45m. Thus your

longitude is 5h. In degrees, this is 5h × 15◦

1h
= 75◦. More precisely, it is 75◦ W of Greenwich

because you are 5 hours behind Greenwich.

3. The luminosity of a star is equal to the energy radiated divided by the time it radiates it,
L = E/t. In this problem we are solving for the lifetime of a main sequence star in terms of
its mass. This means we solve the above equation for t (or τ): τ = E/L. Now the luminosity
is proportional to the mass cubed, L ∝ M3, and the energy available is proportional to the
mass, E ∝M . Thus

τ =
E

L
∝ M

M3
∝ 1

M2
= M−2.

The exponent n = −2 , which means that the more massive a star is, the shorter its main
sequence lifetime is.

To compute actual ages, we rewrite the relation τ ∝ M−2 as an equation by scaling to solar
values,

τ

1010 yr
=

(
M

M�

)−2
⇒ τ = 1010 ×

(
M

M�

)−2
yr.
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We substitute 0.8M� in for M in the equation to find the lifetime of the star:

τ ≈ 1010 ×
(
M

M�

)−2
yr = 1010 ×

(
0.8��M�

��M�

)−2
yr = 1010 × 0.8−2 yr = 15.6× 109 yr .

If a 0.8-M� star is the most massive star still on the main sequence in a globular cluster,
then the cluster’s age is equal to the lifetime of that 0.8-M� star, which you calculated to be

16 billion years . The cluster has the same age.

4. a) The tidal force on an object of mass m and length d located a distance r from another
mass M is given by

Ftidal =
2GMmd

r3
.

Here, d = 200 cm, r = 100 km, m = 60 kg, and M = 10M�. First we convert the masses into
grams, then we substitute the values into the equation above. You should get the tidal force

on the astronaut to be Ftidal = 3.2× 1013 dyne . To convert this answer to pounds, use the
conversion factor given:

3.1× 1013���dyne× 2.2× 10−6 lb

1���dyne
= 7.0× 107 lb .

The poor astronaut feels a tug at her feet that is 70 million pounds greater than at her head!

b) If the distance is halved to r = 200 km, then the tidal force decreases by a factor of 8. This is
because Ftidal ∝ 1/r3, and doubling the distance gives Ftidal ∝ 1/(2r)3 ∝ (1/8r3), i.e., the new

tidal force is an eighth of the original force. Thus Ftidal = 4.0× 1012 dyne = 8.8× 106 lb .

5. a) It’s easier to calculate how fast the telescope is moving first. The orbital speed of an object
is

vorb =

√
GM

r
,

where M is the mass of the central body (the Earth), and r is the distance from the center
of the Earth to the satellite. Since the telescope is 600 km above the Earth’s surface, r =
600 + 6380 = 6980 km. Converting km to cm and plugging into the above equation, we find

that vorb = 7.6× 105 cm/s = 7.6 km/s .

To calculate how many minutes each orbit takes, we use the following definition of orbital
speed:

vorb =
2πr

P
,

where r is the orbital distance, and P is the orbital period. Substituting in for r and vorb, we
find that P = 5800 sec, or 97 min .

b) In geosynchronous orbit, P = 24 hours. In order to calculate the radius of the orbit, we
can use Kepler’s 3rd law in the form:

r3 =
GM

4π2
P 2,
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where M is the mass of the object you’re orbiting (the Earth, in this case). Substituting in
values, we find

r =
3

√
(6.67× 10−8)(5.98× 1027 g)

4π2
(24 h× 3600 sec/h)2 = 4.2× 109 cm = 4.2× 104 km.

The question asks for the distance above the Earth’s surface, so we subtract the radius of the

Earth from r, obtaining 3.6× 104 km , or 5.6 Earth radii above the Earth’s surface.

6. a) The gravitational binding energy for a sphere of constant density is

Ω =
3

5

GM2

R
,

and substituting the mass of the Sun (1.99× 1033 g) for M and the radius of the Sun (6.96×
1010 cm) for R, we find that Ω = 2.3× 1048 erg .

b) The virial theorem says that as a star collapses, one-half of the gravitational binding
energy must be radiated away as light. (The other half remains and heats up the star.)

c) The luminosity of the Sun equals the energy available divided by the time to radiate it
away, L = E/t. We are interested in how long it would take the Sun to radiate away half its
binding energy, assuming its luminosity remained constant at its current value:

t =
Ω/2

L
=

0.5× 2.3× 1048 erg

3.83× 1033 erg/s
= 3× 1014 s = 107 yr .

So gravitational contraction could power the Sun for only 10 million years.

d) Since the Sun is over 4.6 billion years old, it would be impossible for gravitational contrac-
tion to power the Sun, since the latter can only last for about 10 million years.

7. a) The basic formula for density is

ρ =
M

V
,

where ρ (the Greek letter rho) is the density. For the spherical asteroid, V = 4
3πR

3. Thus
the mass of the asteroid is found by multiplying the density by its volume:

M = ρ · 4

3
πR3 = (5 g cm−3) · 4

3
π

(
3 km× 105 cm

1 km

)3

= 5.7× 1017 g ,

where I converted the radius to cm.

b) For the case of a small body falling toward a much more massive body, we can use conser-
vation of energy to derive a formula for the speed of the small body once it collides with the
larger object:

v =

√
2GM

R
,

where M is the mass of the the Earth and R is the radius of the Earth. Substituting in values,

we get that v = 11 km/s . Note that this answer is just the escape velocity from the Earth

and does not depend on the asteroid’s mass.
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c) Once the asteroid collides with the Earth, all its kinetic energy will be transformed into
heat and kinetic energy of the ejected debris. Thus all we need to do is calculate the asteroid’s
kinetic energy just when it hits the Earth:

KE =
1

2
mv2 =

1

2
(5.7× 1017 g)(1.1× 106 cm s−1)2 = 5.5× 1029 erg .

In megatons, this corresponds to an energy of 1.3× 107 MT ! An atomic bomb has a yield
of “only” 0.5 MT. . .

8. The kinetic energy of the Earth orbiting the Sun is given by

KE =
1

2
mv2 =

1

2
MEv

2
E =

1

2
ME

(√
GM�
1 AU

)2

=
1

2

GMEM�
1 AU

,

where we have substituted the orbital velocity vorb =
√
GM/r for the Earth’s velocity.

The gravitational potential energy between the Sun and Earth is given by

PE = −Gm1m2

r
= −GMEM�

1 AU
.

The gravitational potential energy is larger in magnitude, by a factor of two:∣∣∣∣PEKE
∣∣∣∣ =

GMEM�/(1 AU)

GMEM�/2(1 AU)
= 2 .

NB. We get the same result if we apply the virial theorem.

Short Questions

1.

Low Mass Stars High Mass Stars

a) Common a) Rare
b) Less luminous b) Luminous

c) Long lived c) Short lived
d) Red d) Blue

2. The age of the Earth is approximately 4.6 billion years, or 4.6× 109 yr . The Sun’s age is

roughly the same as the Earth’s . The two most abundant elements in the Sun are

Hydrogen and Helium . The element that constitutes most of the mass in your body is

Oxygen . The approximate diameter of the bright disk of the Milky Way Galaxy is

100,000 light years .

3. On the autumnal equinox, the Sun’s declination is δ = 0◦ . Its right ascension is RA = 12h .
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4. On the equinoxes, the Sun’s declination is δ = 0◦. Thus the Sun is located right on the
celestial equator. For the Sun to be directly overhead on these days, the celestial equator
must be directly overhead (i.e., pass through zenith). This occurs only on the Earth’s equator.

So you must be on the Earth’s equator for the Sun to be overhead at noon on the equinoxes.

5. a) The strong force is responsible for binding the protons and neutrons together in the
nucleus.

b) An atom is held together by the electric force (electrical attraction between electrons and
protons).

c) Molecular bonds are formed by the electric force .

d) Gravity keeps planets in orbit around stars.

e) The electric force binds your fingers to your hands (since your body is made of molecules).

f) You are held to the ground by the Earth’s gravity .

g) The weak force is responsible when a subatomic particle changes from one type to another
(e.g., neutron → proton).

h) Stars in a galaxy are bound together by their gravitational attraction .

6. The density of an object is given by ρ = M/V . For a spherical planet, V = 4
3πR

3. Assuming
the mass is constant, then ρ ∝ 1/r3. If the radius of an Earth-mass planet were twice the
Earth’s radius, then the density is ρ ∝ 1/(2R)3 ∝ (1/8)(1/R3), and the density would be

8 times smaller than the Earth’s .

The escape velocity of an object in the gravitational field of a mass M whose radius is R is
given by

vesc =

√
2GM

R
.

Thus vesc ∝
√

1/R. If the radius were twice the Earth’s radius, then vesc ∝
√

1/(2R) ∝√
1/2
√

1/R, and the escape velocity is
√

2 smaller than from the Earth .

7. We use Kepler’s third law to solve this problem. For our solar system, we can write this law
as:

P 2 = r3,

with the understanding that the orbital period P must be expressed in years and the orbital
radius r in AU. We are given r = 2 AU, and thus the orbital period of this planet is

P = r3/2 yr = (2)3/2 yr = 2.8 yr .

Because Kepler’s third law does not depend on the planet’s mass, the answer is the same

(2.8 yr) if the planet were half as massive.

8. The escape velocity of an object in the gravitational field of a mass M whose radius is R is
given by

vesc =

√
2GM

R
.
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Substituting the Moon’s mass and radius into the equation, we find that vesc = 2.4 ×
105 cm s−1. Converting to kilometers per second, vesc = 2.4 km s−1 . The Earth’s escape

speed is 11.2 km/s, so the Moon’s escape speed is 4.7 times smaller .
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